1
|
Lee H, Khazi MI, Jang D, Kadamannil NN, Jelinek R, Kim JM. Chiral Amine-Induced Assembly of Toroidal Structures with a Carboxylic Acid-Functionalized, Polymerizable Macrocyclic Diacetylene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7824-7834. [PMID: 40080664 DOI: 10.1021/acs.langmuir.5c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Forming toroidal structures through self-assembly strategies on a small scale poses significant challenges due to the bending energy barriers involved. Herein, we present the chiral amine-induced fabrication of toroidal structures assembled with a carboxylic acid-functionalized macrocyclic diacetylene (MCDA-COOH/PEA). The formation of microtoroids follows an interesting, heat-induced morphological transition pathway, starting from seeds to the sphere and eventually forming stable microtoroids. The structural arrangements of the microtoroids were analyzed through spectroscopic techniques and X-ray diffraction. These microtoroids further undergo topochemical polymerization upon UV light irradiation, resulting in a blue-phase polymeric PDA structure. This study demonstrates the role of chiral control, intermolecular interactions, and molecular rearrangement via energy minimization in a heat-induced morphological transition pathway. This process induces curvature between adjacent building blocks, promoting the formation of stable toroidal structures with minimized free energy. This study presents a promising self-assembly approach to constructing highly organized functional architectures.
Collapse
Affiliation(s)
- Haksu Lee
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Daewoong Jang
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | | | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
2
|
Oaki Y, Fujii S. Cascading responses of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:9163-9176. [PMID: 39051149 DOI: 10.1039/d4cc02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Responsiveness to stimuli is important in daily life: natural biological activity is governed by continuous stimulus responsiveness. The design of stimuli-responsive materials is required for the development of advanced sensing systems. Although fully controlled stimuli-responsive systems have been constructed in nature, artificial systems remain a challenge. Conventional stimuli-responsive materials show direct responsiveness to an applied stimulus (Stimulus 1), with structural changes in their molecules and organized states. This feature article focuses on cascading responses as a new concept for integrating stimuli-responsive material design. In cascading responses, an original stimulus (Stimulus 1) is converted into other stimuli (Stimulus 2, 3, …, N) through successive conversions. Stimulus N provides the eventual output response. Integration of multiple stimuli-responsive materials is required to achieve cascading responses. Although cascade, domino, and tandem chemical reactions have been reported at the molecular level, they are not used for materials with higher organized structures. In this article, we introduce functional carriers and sensors based on cascading responses as model cases. The concept of cascading responses enables the achievement of transscale responsivity and sensitivity, which are not directly induced by the original stimulus or its responsive material, for the development of advanced dynamic functional materials.
Collapse
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
3
|
Supian ABM, Asyraf MRM, Syamsir A, Najeeb MI, Alhayek A, Al-Dala’ien RN, Manar G, Atiqah A. Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers (Basel) 2024; 16:1545. [PMID: 38891491 PMCID: PMC11174980 DOI: 10.3390/polym16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Reversible thermochromic polymers have emerged as compelling candidates in recent years, captivating attention for their application in heat detection systems. This comprehensive review navigates through the multifaceted landscape, intricately exploring both the virtues and hurdles inherent in their integration within these systems. Their innate capacity to change colour in response to temperature fluctuations renders reversible thermochromic nanocomposites promising assets for heat detection technologies. However, despite their inherent potential, certain barriers hinder their widespread adoption. Factors such as a restricted colour spectrum, reliance on external triggers, and cost considerations have restrained their pervasive use. For instance, these polymer-based materials exhibit utility in the domain of building insulation, where their colour-changing ability serves as a beacon, flagging areas of heat loss or inadequate insulation, thus alerting building managers and homeowners to potential energy inefficiencies. Nevertheless, the limited range of discernible colours may impede precise temperature differentiation. Additionally, dependency on external stimuli, such as electricity or UV light, can complicate implementation and inflate costs. Realising the full potential of these polymer-based materials in heat detection systems necessitates addressing these challenges head-on. Continuous research endeavours aimed at augmenting colour diversity and diminishing reliance on external stimuli offer promising avenues to enhance their efficacy. Hence, this review aims to delve into the intricate nuances surrounding reversible thermochromic nanocomposites, highlighting their transformative potential in heat detection and sensing. By exploring their mechanisms, properties, and current applications, this manuscript endeavours to shed light on their significance, providing insights crucial for further research and potential applications.
Collapse
Affiliation(s)
- A. B. M. Supian
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
- Centre for Defence Research and Technology (CODRAT), Universiti Pertahanan National Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - M. R. M. Asyraf
- Engineering Design Research Group (EDRG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - M. I. Najeeb
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Abdulrahman Alhayek
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - Rayeh Nasr Al-Dala’ien
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - Gunasilan Manar
- Centre for Defence Research and Technology (CODRAT), Universiti Pertahanan National Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - A. Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
4
|
Kadamannil NN, Shames AI, Bisht R, Biswas S, Shauloff N, Lee H, Kim JM, Jelinek R. Light-Induced Self-Assembled Polydiacetylene/Carbon Dot Functional "Honeycomb". ACS APPLIED MATERIALS & INTERFACES 2024; 16:22593-22603. [PMID: 38626352 DOI: 10.1021/acsami.4c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The design of functional supramolecular assemblies from individual molecular building blocks is a fundamental challenge in chemistry and material science. We report on the fabrication of "honeycomb" films by light-induced coassembly of diacetylene derivatives and carbon dots. Specifically, modulating noncovalent interactions between the carbon dots, macrocyclic diacetylene, and anthraquinone diacetylene facilitates formation of thin films exhibiting a long-range, uniform pore structure. We show that light irradiation at distinct wavelengths plays a key role in the assembly process and generation of unique macro-porous morphology, by both initiating interactions between the carbon dots and the anthraquinone moieties and giving rise to the topotactic polymerization of the polydiacetylene network. We further demonstrate utilization of the macro-porous film as a photocatalytic platform for water pollutant degradation and as potential supercapacitor electrodes, both applications taking advantage of the high surface area, hydrophobicity, and pore structure of the film.
Collapse
Affiliation(s)
| | - Alexander I Shames
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Rajesh Bisht
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Sudipta Biswas
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Nitzan Shauloff
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Haksu Lee
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
5
|
Bargakshatriya R, Pramanik SK. Stimuli-Responsive Prodrug Chemistries for Cancer Therapy. Chembiochem 2023; 24:e202300155. [PMID: 37341379 DOI: 10.1002/cbic.202300155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules' bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Ghosh A, Slappendel L, Nguyen BNT, von Krbek LKS, Ronson TK, Castilla AM, Nitschke JR. Light-Powered Reversible Guest Release and Uptake from Zn 4L 4 Capsules. J Am Chem Soc 2023; 145:3828-3832. [PMID: 36753330 PMCID: PMC9951218 DOI: 10.1021/jacs.2c10084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 02/09/2023]
Abstract
A strategy for light-powered guest release from a tetrahedral capsule has been developed by incorporating azobenzene units at its vertices. A new Zn4L4 tetrahedral capsule bearing 12 diazo moieties at its metal-ion vertices was prepared from a phenyldiazenyl-functionalized subcomponent and a central trialdehyde panel. Ultraviolet irradiation caused isomerization of the peripheral diazo groups from the thermodynamically preferred trans configuration to the cis form, thereby generating steric clash and resulting in cage disassembly and concomitant guest release. Visible-light irradiation drove cage re-assembly following re-isomerization of the diazo groups to the trans form, resulting in guest re-uptake. A detailed 19F NMR study elucidated how switching led to guest release: each metal vertex tolerated only one cis-azobenzene moiety, with further isomerization leading to cage disassembly.
Collapse
Affiliation(s)
- Amit Ghosh
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Laura Slappendel
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bao-Nguyen T. Nguyen
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Larissa K. S. von Krbek
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ana M. Castilla
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Ghosh S, Ghosh S, Raza R, Ghosh K. Progress of 3-aminopyridine-based amide, urea, imine and azo derivatives in supramolecular gelation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Kameta N. Stimuli-Responsive Transformable Supramolecular Nanotubes. CHEM REC 2022; 22:e202200025. [PMID: 35244334 DOI: 10.1002/tcr.202200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Supramolecular nanotubes produced by self-assembly of organic molecules can have unique structural features such as a one-dimensional morphology with no branching, distinguishable inner and outer surfaces and membrane walls, or a structure that is hollow and has a high aspect ratio. Incorporation of functional groups that respond to external chemical or physical stimuli into the constituent organic molecules of supramolecular nanotubes allows us to drastically change the structure of the nanotubes by applying such stimuli. This ability affords an array of controllable approaches for the encapsulation, storage, and release of guest compounds, which is expected to be useful in the fields of physics, chemistry, biology, and medicine. In this article, I review the supramolecular nanotubes developed by our group that exhibit morphological transformations in response to pH, chemical reaction, light, temperature, or moisture.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
9
|
Baillargeon P, Robidas R, Toulgoat O, Michaud Z, Legault CY, Rahem T. Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length. CRYSTAL GROWTH & DESIGN 2022; 22:2812-2823. [PMID: 35529068 PMCID: PMC9073937 DOI: 10.1021/acs.cgd.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 05/02/2023]
Abstract
We present the topochemical polymerization of two lignocellulosic biobased diacetylenes (DAs) that only differ by an alkyl spacer length of 1 methylene (n = 1) or 3 methylene units (n = 3) between the diyne and carbamate functionalities. Their crystalline molecular organizations have the distinctive feature of being suitable for polymerization in two potential directions, either parallel or skewed to the hydrogen-bonded (HB) network. However, single-crystal structures of the final polydiacetylenes (PDAs) demonstrate that the resulting orientation of the conjugated backbones is different for these two derivatives, which lead to HB supramolecular polymer networks (2D nanosheets) for n = 1 and to independent linear PDA chains with intramolecular HBs for n = 3. Thus, spacer length modification can be considered a new strategy to influence the molecular orientation of conjugated polymer chains, which is crucial for developing the next generation of materials with optimal mechanical and optoelectronic properties. Calculations were performed on model oligodiacetylenes to evaluate the cooperativity effect of HBs in the different crystalline supramolecular packing motifs and the energy profile related to the torsion of the conjugated backbone of a PDA chain (i.e., its ability to adopt planar or helical conformations).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Raphaël Robidas
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier Toulgoat
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Zacharie Michaud
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Claude Y. Legault
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Tarik Rahem
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| |
Collapse
|
10
|
Kameta N, Kikkawa Y, Norikane Y. Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein. NANOSCALE ADVANCES 2022; 4:1979-1987. [PMID: 36133410 PMCID: PMC9419338 DOI: 10.1039/d2na00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 06/16/2023]
Abstract
Nanotubes with a single monolayer membrane wall comprised of a synthetic glycolipid and one of two synthetic azobenzene derivatives were assembled. X-ray diffraction, infrared, UV-visible, and circular dichroism spectroscopy clarified the embedding style of the azobenzene derivatives in the membrane wall, revealing that, depending on their different intermolecular hydrogen bond strengths, one azobenzene derivative was individually dispersed whereas the other formed a J-type aggregate. The non-aggregated derivative was insensitive to UV irradiation due to tight fixation by the surrounding glycolipid. In contrast, the aggregated derivative was sensitive to UV irradiation, which induced trans-to-cis isomerization of the derivative and disassembly of the J-type aggregate. Subsequent dissociation of the derivative into the bulk solution resulted in the formation of many nanometer-scale holes in the membrane wall. Although a model protein encapsulated within the nanotubes was slowly released over time from the two open ends of the nanotubes without UV irradiation, exposure to UV irradiation resulted in faster, preferential release of the protein through the holes in the membrane wall. The present findings are expected to facilitate the development not only of efficient means of recovering guest compounds stored within nanotubes but also the development of novel stimuli-responsive capsules in biological and medical fields.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan +81-29-861-4545 +81-29-861-4478
| | - Y Kikkawa
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Y Norikane
- Research Institute for Advanced Electronics and Photonics, Department of Electronics and Manufacturing, AIST Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
11
|
Shin MJ. Solvent effect of
D
2
O
on the thermochromic sensitivity of polydiacetylene vesicle systems. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Jae Shin
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| |
Collapse
|
12
|
Shin MJ. Relationship of color change to permeation of target compound in polydiacetylene vesicle system. J Appl Polym Sci 2021. [DOI: 10.1002/app.51192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Min Jae Shin
- Department of Cosmetics and Biotechnology Semyung University Jecheon South Korea
| |
Collapse
|
13
|
Sarkar S, Sarkar P, Ghosh P. Heteroditopic Macrobicyclic Molecular Vessels for Single Step Aerial Oxidative Transformation of Primary Alcohol Appended Cross Azobenzenes. J Org Chem 2021; 86:6648-6664. [PMID: 33908241 DOI: 10.1021/acs.joc.1c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of oxy-ether tris-amino heteroditopic macrobicycles (L1-L4) with various cavity dimensions have been synthesized and explored for their Cu(II) catalyzed selective single step aerial oxidative cross-coupling of primary alcohol based anilines with several aromatic amines toward the formation of primary alcohol appended cross azobenzenes (POCABs). The beauty of this transformation is that the easily oxidizable benzyl/primary alcohol group remains unhampered during the course of this oxidation due to the protective oxy-ether pocket of this series of macrobicyclic vessels. Various dimensionalities of the molecular vessels have shown specific size complementary selection for substrates toward efficient syntheses of regioselective POCAB products. To establish the requirement of the three-dimensional cavity based additives, a particular catalytic reaction has been examined in the presence of macrobicycles (L2 and L3) versus macrocycles (MC1 and MC2) and tripodal acyclic (AC1 and AC2) analogous components, respectively. Subsequently, L1-L4 have been extensively utilized toward the syntheses of as many as 44 POCABs and are characterized by different spectroscopic techniques and single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
14
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Kim YK, Pham TC, Kim J, Bae C, Choi Y, Jo MH, Lee S. Polydiacetylenes Containing 2‐Picolylamide Chemosensor for Colorimetric Detection of Cadmium Ions. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yong Kyun Kim
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Thanh Chung Pham
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Jaewon Kim
- Department of Chemistry Pukyong National University Busan 48513 South Korea
| | - Chaeeon Bae
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Yeonghwan Choi
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Min Hee Jo
- Department of Chemistry Pukyong National University Busan 48513 South Korea
| | - Songyi Lee
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
- Department of Chemistry Pukyong National University Busan 48513 South Korea
| |
Collapse
|
16
|
All-optically phase-induced polarization modulation by means of holographic method. Sci Rep 2020; 10:5657. [PMID: 32221388 PMCID: PMC7101382 DOI: 10.1038/s41598-020-62549-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Phase-induced polarization modulation has been achieved experimentally by means of the all-optical holographic method. An extra spiral phase is added to a Gaussian beam and then a holographic grating is recorded through the interference of a Gaussian beam and the phase-vortex beam with the same linear polarization state in an azobenzene liquid-crystalline film. We report here that the polarization state of the diffraction light from the recorded grating is different from that of the incident light, while no polarization variation occurs for the holographic grating recorded by two Gaussian beams. The phase-induced polarization modulation is mainly attributed to the formation of birefringence in the film generated by phase vortex, which is investigated through the ripple patterns resulting from the competition between photoinduced torques and analysed by the Jones matrix. The experimental results could enrich the connotation between optical parameters and offer a method to realize polarization modulation through phase control.
Collapse
|
17
|
Khazi MI, Balachandra C, Shin G, Jang GH, Govindaraju T, Kim JM. Co-solvent polarity tuned thermochromic nanotubes of cyclic dipeptide-polydiacetylene supramolecular system. RSC Adv 2020; 10:35389-35396. [PMID: 35515666 PMCID: PMC9056892 DOI: 10.1039/d0ra05656a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
The cooperative non-covalent interactions arising from structurally integrated multiple molecules have emerged as a powerful tool for the creation of functional supramolecular structures. Herein, we constructed cyclic dipeptide (CDP)–polydiacetylene (PDA) conjugate (CDP–DA) by introducing cyclo(l-Phe-l-Lys) to the linear 10,12-pentacosadiynoic acid. Owing to extensive hydrogen bonding characteristics, together with structural chirality of cyclo(l-Phe-l-Lys) and strong π–π stacking diacetylenic template, CDP–DA generated supramolecular nanotubes. The structural visualization using scanning and transmission electron microscopy revealed chloroform/methanol co-solvent polarity tuned morphological transformation of intrinsic lamellar assemblies into nanotubes comprising single-wall and multi-wall structure. The mechanistic understanding by X-ray diffraction patterns confirms bilayer organization in lamellar structure, which forms nanotubes via a gradual lamellar curling-to-scrolling process. The supramolecular CDP–DA nanotubes are transformed into the rigid covalently cross-linked blue-phase polydiacetylene (CDP–PDA) by UV irradiation. Very interestingly, the blue-phase nanotubes display reversible thermochromic changing temperature up to 150 °C with excellent repeatability over a dozen thermal cycles. This work provides an efficient strategy for precise morphological control and aiding the perspective for development in nanostructures for functional devices. Co-solvent controlled fabrication of thermo-responsive chromogenic nanotubes of a cyclic dipeptide–polydiacetylene supramolecular system.![]()
Collapse
Affiliation(s)
| | - Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Geon Shin
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Gang-Hee Jang
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Jong-Man Kim
- Institute of Nano Science and Technology, Hanyang University Seoul 04763 Korea .,Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| |
Collapse
|