1
|
Bougiouri K, Aninta SG, Charlton S, Harris A, Carmagnini A, Piličiauskienė G, Feuerborn TR, Scarsbrook L, Tabadda K, Blaževičius P, Parker HG, Gopalakrishnan S, Larson G, Ostrander EA, Irving-Pease EK, Frantz LA, Racimo F. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585179. [PMID: 38903121 PMCID: PMC11188068 DOI: 10.1101/2024.03.15.585179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.
Collapse
Affiliation(s)
- Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Carmagnini
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Giedrė Piličiauskienė
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
| | - Tatiana R. Feuerborn
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lachie Scarsbrook
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabadda
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Povilas Blaževičius
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
- National Museum of Lithuania, Vilnius, Lithuania
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan K. Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent A.F. Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Doan K, Schnitzler A, Preston F, Griggo C, Lang G, Belhaoues F, Blaise E, Crégut-Bonnoure E, Frère S, Foucras S, Gardeisen A, Laurent A, Müller W, Picavet R, Puissant S, Yvinec JH, Pilot M. Evolutionary history of the extinct wolf population from France in the context of global phylogeographic changes throughout the Holocene. Mol Ecol 2023; 32:4627-4647. [PMID: 37337956 DOI: 10.1111/mec.17054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Phylogeographic patterns in large mammals result from natural environmental factors and anthropogenic effects, which in some cases include domestication. The grey wolf was once widely distributed across the Holarctic, but experienced phylogeographic shifts and demographic declines during the Holocene. In the 19th-20th centuries, the species became extirpated from large parts of Europe due to direct extermination and habitat loss. We reconstructed the evolutionary history of the extinct Western European wolves based on the mitogenomic composition of 78 samples from France (Neolithic-20th century) in the context of other populations of wolves and dogs worldwide. We found a close genetic similarity of French wolves from ancient, medieval and recent populations, which suggests the long-term continuity of maternal lineages. MtDNA haplotypes of the French wolves showed large diversity and fell into two main haplogroups of modern Holarctic wolves. Our worldwide phylogeographic analysis indicated that haplogroup W1, which includes wolves from Eurasia and North America, originated in Northern Siberia. Haplogroup W2, which includes only European wolves, originated in Europe ~35 kya and its frequency was reduced during the Holocene due to an expansion of haplogroup W1 from the east. Moreover, we found that dog haplogroup D, currently restricted to Europe and the Middle East, was nested within the wolf haplogroup W2. This suggests European origin of haplogroup D, probably as a result of an ancient introgression from European wolves. Our results highlight the dynamic evolutionary history of European wolves during the Holocene, with a partial lineage replacement and introgressive hybridization with local dog populations.
Collapse
Affiliation(s)
- Karolina Doan
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Annik Schnitzler
- UMR 7194 HNHP CNRS/MNHN/UPVD, Equipe NOMADE, Muséum national d'histoire naturelle, Paris, France
| | | | - Christophe Griggo
- Université Grenoble Alpes, Laboratoire EDYTEM, URM 5204 Bâtiment "Pôle Montagne", 5 bd de la mer Caspienne, France
| | - Gérard Lang
- Espace Chasse et Nature Chemin de Strasbourg, France
| | - Fabien Belhaoues
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | - Emilie Blaise
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | - Evelyne Crégut-Bonnoure
- Muséum Requien, Avignon; Laboratoire TRACES-UMR 5608, Université Toulouse-Jean Jaurès, Toulouse, France
| | - Stéphane Frère
- Inrap, UMR 7209 AASPE, Muséum National d'Histoire Naturelle, La Courneuve, France
| | | | - Armelle Gardeisen
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | | | - Werner Müller
- Laboratoire d'archéozoologie, Université de Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, Switzerland
| | | | - Stéphane Puissant
- Muséum d'Histoire naturelle - Jardin de l'Arquebuse CS 73310 F-21033 Dijon Cedex, France
| | - Jean-Hervé Yvinec
- INRAP, UMR 7209 AASPE, Laboratoire d'archéozoologie de Compiègne, CRAVO, Compiègne, France
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
- School of Life Sciences, University of Lincoln, Lincoln, UK
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Marciszak A, Kropczyk A, Gornig W, Kot M, Nadachowski A, Lipecki G. History of Polish Canidae (Carnivora, Mammalia) and Their Biochronological Implications on the Eurasian Background. Genes (Basel) 2023; 14:genes14030539. [PMID: 36980812 PMCID: PMC10048199 DOI: 10.3390/genes14030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The remains of 12 canid species that date back ca. 4.9 myr have been found at 116 paleontological localities. Among these localities, eight are dated to the Pliocene age, 12 are dated to the Early Pleistocene age, 12 are from the Middle Pleistocene age, while the most numerous group includes 84 sites from the Late Pleistocene–Holocene age. Some, especially older forms such as Eucyon odessanus and Nyctereutes donnezani, have only been found at single sites, while the remains of species from the genus Lycaon, Canis and Vulpes have been recorded at numerous sites from the last 2 myr. Ancient canids such as Eucyon and Nyctereutes had already vanished from Poland in the Earliest Pleistocene, between 2.5 and 2.2 myr ago. Poland’s extant canid fauna is characterised by the presence of two new species, which spread into the territory due to a human introduction (Nyctereutes procyonoides) or natural expansion (Canis aureus). Research indicates a strong competition between dogs, especially between Lycaon, Canis and Cuon, with a strong lycaon-limiting effect on the wolf between 2.5 and 0.4 myr ago. After the extinction of Lycaon lycaonoides, Canis lupus evolved rapidly, increasing in number and size, and taking over the niche occupied by Lycaon. In order to reduce competition, the body size of Cuon alpinus gradually reduced, and it became an animal adapted to the forest, highland and mountain environments. Generally, the history of canids in Poland is similar to that known of Eurasia with some noteworthy events, such as the early occurrence of Canis cf. etruscus from Węże 2 (2.9–2.6 myr ago), Lycaon falconeri from Rębielice Królewskie 1A or one of the latest occurrences of L. lycaonoides from Draby 3 (430–370 kyr). Predominantly lowland or upland in the southern part and devoid of significant ecological barriers, Poland is also an important migration corridor in the East–West system. This 500–600 km wide corridor was the Asian gateway to Europe, from where species of an eastern origin penetrated the continent’s interior. In colder periods, it was in turn a region through which boreal species or those associated with the mammoth steppe retreated.
Collapse
Affiliation(s)
- Adrian Marciszak
- Department of Paleozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
- Correspondence:
| | - Aleksandra Kropczyk
- Department of Paleozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Wiktoria Gornig
- Department of Paleozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Małgorzata Kot
- Faculty of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warszawa, Poland
| | - Adam Nadachowski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Grzegorz Lipecki
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| |
Collapse
|
4
|
Wang MS, Thakur M, Jhala Y, Wang S, Srinivas Y, Dai SS, Liu ZX, Chen HM, Green RE, Koepfli KP, Shapiro B. OUP accepted manuscript. Genome Biol Evol 2022; 14:6524629. [PMID: 35137061 PMCID: PMC8841465 DOI: 10.1093/gbe/evac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Corresponding authors: E-mails: ; ; ;
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yellapu Srinivas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zheng-Xi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hong-Man Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- Corresponding authors: E-mails: ; ; ;
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| |
Collapse
|
5
|
Adavoudi R, Pilot M. Consequences of Hybridization in Mammals: A Systematic Review. Genes (Basel) 2021; 13:50. [PMID: 35052393 PMCID: PMC8774782 DOI: 10.3390/genes13010050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland;
| |
Collapse
|
6
|
Krofel M, Hatlauf J, Bogdanowicz W, Campbell LAD, Godinho R, Jhala YV, Kitchener AC, Koepfli K, Moehlman P, Senn H, Sillero‐Zubiri C, Viranta S, Werhahn G, Alvares F. Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. J Zool (1987) 2021. [DOI: 10.1111/jzo.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. Krofel
- Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - J. Hatlauf
- University of Natural Resources and Life Sciences Vienna, Department of Integrative Biology and Biodiversity Research Institute of Wildlife Biology and Game Management Vienna Austria
| | - W. Bogdanowicz
- Museum and Institute of Zoology Polish Academy of Sciences Warszawa Poland
| | - L. A. D. Campbell
- Department of Zoology Recanati‐Kaplan Centre; Tubney University of Oxford Wildlife Conservation Research Unit Oxfordshire UK
| | - R. Godinho
- InBIO Laboratório Associado, Campus de Vairão CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Y. V. Jhala
- Animal Ecology & Conservation Biology Wildlife Institute of India Dehradun India
| | - A. C. Kitchener
- Department of Natural Sciences National Museums Scotland Edinburgh UK
| | - K.‐P. Koepfli
- Smithsonian‐Mason School of Conservation George Mason University Front Royal VA USA
- Smithsonian Conservation Biology Institute Center for Species Survival National Zoological Park Front Royal VA USA
- Computer Technologies Laboratory ITMO University St. Petersburg Russia
| | - P. Moehlman
- IUCN/SSC Equid Specialist Group Tanzania Wildlife Research Institute (TAWIRI) EcoHealth Alliance and The Earth Institute Columbia University Arusha Tanzania
| | - H. Senn
- WildGenes Laboratory Conservation and Science Programmes Royal Zoological Society of Scotland, RZSS Edinburgh UK
| | - C. Sillero‐Zubiri
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
- IUCN SSC Canid Specialist Group Oxford UK
- Born Free Foundation Horsham UK
| | - S. Viranta
- Faculty of Medicine University of Helsinki Helsinki Finland
| | - G. Werhahn
- IUCN SSC Canid Specialist Group Oxford UK
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
| | - F. Alvares
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|
7
|
Herrando‐Pérez S, Tobler R, Huber CD. smartsnp
, an
r
package for fast multivariate analyses of big genomic data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Salvador Herrando‐Pérez
- Australian Centre for Ancient DNA School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Department of Biogeography and Global Change Museo Nacional de Ciencias NaturalesSpanish National Research Council (CSIC) Madrid Spain
| | - Raymond Tobler
- Australian Centre for Ancient DNA School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Evolution of Cultural Diversity Initiative Australian National University Canberra ACT Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Department of Biology The Pennsylvania State University University Park PA USA
| |
Collapse
|
8
|
Pilot M, Moura AE, Okhlopkov IM, Mamaev NV, Manaseryan NH, Hayrapetyan V, Kopaliani N, Tsingarska E, Alagaili AN, Mohammed OB, Ostrander EA, Bogdanowicz W. Human-modified canids in human-modified landscapes: The evolutionary consequences of hybridization for grey wolves and free-ranging domestic dogs. Evol Appl 2021; 14:2433-2456. [PMID: 34745336 PMCID: PMC8549620 DOI: 10.1111/eva.13257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Andre E. Moura
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Innokentiy M. Okhlopkov
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Nikolay V. Mamaev
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Ninna H. Manaseryan
- Scientific Center of Zoology and HydroecologyNational Academy of SciencesYerevanArmenia
| | | | | | | | - Abdulaziz N. Alagaili
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Osama B. Mohammed
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
9
|
Molloy EK, Durvasula A, Sankararaman S. Advancing admixture graph estimation via maximum likelihood network orientation. Bioinformatics 2021; 37:i142-i150. [PMID: 34252951 PMCID: PMC8336447 DOI: 10.1093/bioinformatics/btab267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Motivation Admixture, the interbreeding between previously distinct populations, is a pervasive force in evolution. The evolutionary history of populations in the presence of admixture can be modeled by augmenting phylogenetic trees with additional nodes that represent admixture events. While enabling a more faithful representation of evolutionary history, admixture graphs present formidable inferential challenges, and there is an increasing need for methods that are accurate, fully automated and computationally efficient. One key challenge arises from the size of the space of admixture graphs. Given that exhaustively evaluating all admixture graphs can be prohibitively expensive, heuristics have been developed to enable efficient search over this space. One heuristic, implemented in the popular method TreeMix, consists of adding edges to a starting tree while optimizing a suitable objective function. Results Here, we present a demographic model (with one admixed population incident to a leaf) where TreeMix and any other starting-tree-based maximum likelihood heuristic using its likelihood function is guaranteed to get stuck in a local optimum and return an incorrect network topology. To address this issue, we propose a new search strategy that we term maximum likelihood network orientation (MLNO). We augment TreeMix with an exhaustive search for an MLNO, referring to this approach as OrientAGraph. In evaluations including previously published admixture graphs, OrientAGraph outperformed TreeMix on 4/8 models (there are no differences in the other cases). Overall, OrientAGraph found graphs with higher likelihood scores and topological accuracy while remaining computationally efficient. Lastly, our study reveals several directions for improving maximum likelihood admixture graph estimation. Availability and implementation OrientAGraph is available on Github (https://github.com/sriramlab/OrientAGraph) under the GNU General Public License v3.0. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Erin K Molloy
- Department of Computer Science, University of California, Los Angeles, LA 90095, USA.,Institute for Advanced Computer Studies, University of Maryland, College Park, College Park, MD 20740, USA
| | - Arun Durvasula
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, LA 90095, USA
| | - Sriram Sankararaman
- Department of Computer Science, University of California, Los Angeles, LA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, LA 90095, USA.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, LA 90095, USA.,Department of Computational Medicine, University of California, Los Angeles, LA 90095, USA
| |
Collapse
|
10
|
Trut LN, Kharlamova AV, Pilipenko AS, Herbeck YE. The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Hekkala E, Gatesy J, Narechania A, Meredith R, Russello M, Aardema ML, Jensen E, Montanari S, Brochu C, Norell M, Amato G. Paleogenomics illuminates the evolutionary history of the extinct Holocene "horned" crocodile of Madagascar, Voay robustus. Commun Biol 2021; 4:505. [PMID: 33907305 PMCID: PMC8079395 DOI: 10.1038/s42003-021-02017-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Ancient DNA is transforming our ability to reconstruct historical patterns and mechanisms shaping modern diversity and distributions. In particular, molecular data from extinct Holocene island faunas have revealed surprising biogeographic scenarios. Here, we recovered partial mitochondrial (mt) genomes for 1300-1400 year old specimens (n = 2) of the extinct "horned" crocodile, Voay robustus, collected from Holocene deposits in southwestern Madagascar. Phylogenetic analyses of partial mt genomes and tip-dated timetrees based on molecular, fossil, and stratigraphic data favor a sister group relationship between Voay and Crocodylus (true crocodiles). These well supported trees conflict with recent morphological systematic work that has consistently placed Voay within Osteolaeminae (dwarf crocodiles and kin) and provide evidence for likely homoplasy in crocodylian cranial anatomy and snout shape. The close relationship between Voay and Crocodylus lends additional context for understanding the biogeographic origins of these genera and refines competing hypotheses for the recent extinction of Voay from Madagascar.
Collapse
Affiliation(s)
- E Hekkala
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
- American Museum of Natural History, New York, NY, USA.
| | - J Gatesy
- American Museum of Natural History, New York, NY, USA
| | - A Narechania
- American Museum of Natural History, New York, NY, USA
| | - R Meredith
- American Museum of Natural History, New York, NY, USA
- Montclair State University, Montclair, NJ, USA
| | - M Russello
- University of British Columbia, Department of Biology, Kelowna, BC, Canada
| | - M L Aardema
- American Museum of Natural History, New York, NY, USA
- Montclair State University, Montclair, NJ, USA
| | - E Jensen
- University of British Columbia, Department of Biology, Kelowna, BC, Canada
- Newcastle University, School of Natural and Environmental Sciences Ecology Group, Newcastle, UK
| | - S Montanari
- American Museum of Natural History, New York, NY, USA
| | - C Brochu
- University of Iowa, Department of Geosciences, Iowa City, IA, USA
| | - M Norell
- American Museum of Natural History, New York, NY, USA
| | - G Amato
- American Museum of Natural History, New York, NY, USA
| |
Collapse
|
12
|
Baveja P, Garg KM, Chattopadhyay B, Sadanandan KR, Prawiradilaga DM, Yuda P, Lee JGH, Rheindt FE. Using historical genome-wide DNA to unravel the confused taxonomy in a songbird lineage that is extinct in the wild. Evol Appl 2021; 14:698-709. [PMID: 33767745 PMCID: PMC7980273 DOI: 10.1111/eva.13149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Urgent conservation action for terminally endangered species is sometimes hampered by taxonomic uncertainty, especially in illegally traded animals that are often cross-bred in captivity. To overcome these problems, we used a genomic approach to analyze historical DNA from museum samples across the Asian Pied Starling (Gracupica contra) complex in tropical Asia, a popular victim of the ongoing songbird crisis whose distinct Javan population ("Javan Pied Starling") is extinct in the wild and subject to admixture in captivity. Comparing genomic profiles across the entire distribution, we detected three deeply diverged lineages at the species level characterized by a lack of genomic intermediacy near areas of contact. Our study demonstrates that the use of historical DNA can be instrumental in delimiting species in situations of taxonomic uncertainty, especially when modern admixture may obfuscate species boundaries. Results of our research will enable conservationists to commence a dedicated ex situ breeding program for the Javan Pied Starling, and serve as a blueprint for similar conservation problems involving terminally endangered species subject to allelic infiltration from close congeners.
Collapse
Affiliation(s)
- Pratibha Baveja
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Kritika M. Garg
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Institute of Bioinformatics and Applied BiotechnologyBangaloreIndia
| | - Balaji Chattopadhyay
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Keren R. Sadanandan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Max Planck Institute for OrnithologySeewiesenGermany
| | | | - Pramana Yuda
- Fakultas TeknobiologiUniversitas Atma Jaya YogyakartaYogyakartaIndonesia
| | - Jessica G. H. Lee
- Department of Conservation and ResearchWildlife Reserves SingaporeSingaporeSingapore
| | - Frank E. Rheindt
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
13
|
Smeds L, Aspi J, Berglund J, Kojola I, Tirronen K, Ellegren H. Whole-genome analyses provide no evidence for dog introgression in Fennoscandian wolf populations. Evol Appl 2021; 14:721-734. [PMID: 33767747 PMCID: PMC7980305 DOI: 10.1111/eva.13151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/02/2023] Open
Abstract
Hybridization and admixture can threaten the genetic integrity of populations and be of particular concern to endangered species. Hybridization between grey wolves and dogs has been documented in many wolf populations worldwide and is a prominent example of human-mediated hybridization between a domesticated species and its wild relative. We analysed whole-genome sequences from >200 wolves and >100 dogs to study admixture in Fennoscandian wolf populations. A principal component analysis of genetic variation and admixture showed that wolves and dogs were well-separated, without evidence for introgression. Analyses of local ancestry revealed that wolves had <1% mixed ancestry, levels comparable to the degree of mixed ancestry in many dogs, and likely not resulting from recent wolf-dog hybridization. We also show that the founders of the Scandinavian wolf population were genetically inseparable from Finnish and Russian Karelian wolves, pointing at the geographical origin of contemporary Scandinavian wolves. Moreover, we found Scandinavian-born animals among wolves sampled in Finland, demonstrating bidirectional gene flow between the Scandinavian Peninsula and eastern countries. The low incidence of admixture between wolves and dogs in Fennoscandia may be explained by the fact that feral dogs are rare in this part of Europe and that careful monitoring and management act to remove hybrids before they backcross into wolf populations.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Jouni Aspi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Jonas Berglund
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Ilpo Kojola
- Natural Resources Institute Finland (Luke)RovaniemiFinland
| | - Konstantin Tirronen
- Institute of BiologyKarelian Research Centre of the Russian Academy of SciencePetrozavodskRussian Federation
| | - Hans Ellegren
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
14
|
Ramos-Madrigal J, Sinding MHS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, Fedorov S, Kandyba A, Germonpré M, Bocherens H, Feuerborn TR, Pitulko VV, Pavlova EY, Nikolskiy PA, Kasparov AK, Ivanova VV, Larson G, Frantz LAF, Willerslev E, Meldgaard M, Petersen B, Sicheritz-Ponten T, Bachmann L, Wiig Ø, Hansen AJ, Gilbert MTP, Gopalakrishnan S. Genomes of Pleistocene Siberian Wolves Uncover Multiple Extinct Wolf Lineages. Curr Biol 2021; 31:198-206.e8. [PMID: 33125870 PMCID: PMC7809626 DOI: 10.1016/j.cub.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
Collapse
Affiliation(s)
- Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Natural History Museum, University of Oslo, Oslo, Norway; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Greenland Institute of Natural Resources, Nuuk, Greenland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Christian Carøe
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sarah S T Mak
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Niemann
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Sergey Fedorov
- Mammoth Museum of North-Eastern Federal University, Yakutsk, Russia
| | - Alexander Kandyba
- Department of Stone Age Archeology, Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Mietje Germonpré
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Biogeology, University of Tübingen, Tübingen, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen, Germany
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena Y Pavlova
- Arctic and Antarctic Research Institute, St. Petersburg, Russia
| | | | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Varvara V Ivanova
- VNIIOkeangeologia Research Institute (The All-Russian Research Institute of Geology and Mineral Resources of the World Ocean), St. Petersburg, Russia
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Eske Willerslev
- Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Danish Institute for Advanced Study (D-IAS), University of Southern Denmark, Odense, Denmark; Department of Zoology, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, University of Cambridge, Cambridge, UK
| | - Morten Meldgaard
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Thomas Sicheritz-Ponten
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Anders J Hansen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Qimmeq Project, University of Greenland, Nuussuaq, Greenland; Section for GeoGenetics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
15
|
Sarabia C, vonHoldt B, Larrasoaña JC, Uríos V, Leonard JA. Pleistocene climate fluctuations drove demographic history of African golden wolves (Canis lupaster). Mol Ecol 2020; 30:6101-6120. [PMID: 33372365 DOI: 10.1111/mec.15784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Pleistocene climate change impacted entire ecosystems throughout the world. In the northern hemisphere, the distribution of Arctic species expanded during glacial periods, while more temperate and mesic species contracted into climatic refugia, where isolation drove genetic divergence. Cycles of local cooling and warming in the Sahara region of northern Africa caused repeated contractions and expansions of savannah-like environments which connected mesic species isolated in refugia during interglacial times, possibly driving population expansions and contractions; divergence and geneflow in the associated fauna. Here, we use whole genome sequences of African golden wolves (Canis lupaster), a generalist mesopredator with a wide distribution in northern Africa to estimate their demographic history and past episodes of geneflow. We detect a correlation between divergence times and cycles of increased aridity-associated Pleistocene glacial cycles. A complex demographic history with responses to local climate change in different lineages was found, including a relict lineage north of the High Atlas Mountains of Morocco that has been isolated for more than 18,000 years, possibly a distinct ecotype.
Collapse
Affiliation(s)
- Carlos Sarabia
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| | - Bridgett vonHoldt
- Faculty of Ecology and Evolutionary Biology, University of Princeton, Princeton, NJ, USA
| | | | - Vicente Uríos
- Vertebrate Zoology Research Group, University of Alicante, Alicante, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| |
Collapse
|
16
|
Shakarashvili M, Kopaliani N, Gurielidze Z, Dekanoidze D, Ninua L, Tarkhnishvili D. Population genetic structure and dispersal patterns of grey wolfs (
Canis lupus
) and golden jackals (
Canis aureus
) in Georgia, the Caucasus. J Zool (1987) 2020. [DOI: 10.1111/jzo.12831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - N. Kopaliani
- Institute of Ecology Ilia State University Tbilisi Georgia
| | - Z. Gurielidze
- Institute of Ecology Ilia State University Tbilisi Georgia
- Tbilisi Zoo Tbilisi Georgia
| | - D. Dekanoidze
- Institute of Ecology Ilia State University Tbilisi Georgia
| | - L. Ninua
- Institute of Ecology Ilia State University Tbilisi Georgia
| | | |
Collapse
|
17
|
Galeta P, Lázničková-Galetová M, Sablin M, Germonpré M. Morphological evidence for early dog domestication in the European Pleistocene: New evidence from a randomization approach to group differences. Anat Rec (Hoboken) 2020; 304:42-62. [PMID: 32869467 DOI: 10.1002/ar.24500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
The antiquity of the wolf/dog domestication has been recently pushed back in time from the Late Upper Paleolithic (~14,000 years ago) to the Early Upper Paleolithic (EUP; ~36,000 years ago). Some authors questioned this early dog domestication claiming that the putative (EUP) Paleolithic dogs fall within the morphological range of recent wolves. In this study, we reanalyzed a data set of large canid skulls using unbalanced- and balanced-randomized discriminant analyses to assess whether the putative Paleolithic dogs are morphologically unique or whether they represent a subsample of the wolf morpho-population. We evaluated morphological differences between 96 specimens of the 4 a priori reference groups (8 putative Paleolithic dogs, 41 recent northern dogs, 7 Pleistocene wolves, and 40 recent northern wolves) using discriminant analysis based on 5 ln-transformed raw and allometrically size-adjusted cranial measurements. Putative Paleolithic dogs are classified with high accuracies (87.5 and 100.0%, cross-validated) and randomization experiment suggests that these classification rates cannot be exclusively explained by the small and uneven sample sizes of reference groups. It indicates that putative Upper Paleolithic dogs may represent a discrete canid group with morphological signs of domestication (a relatively shorter skull and wider palate and braincase) that distinguish them from sympatric Pleistocene wolves. The present results add evidence to the view that these specimens could represent incipient Paleolithic dogs that were involved in daily activities of European Upper Paleolithic forager groups.
Collapse
Affiliation(s)
- Patrik Galeta
- Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic
| | - Martina Lázničková-Galetová
- Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic.,The Moravian Museum, Brno, Czech Republic
| | - Mikhail Sablin
- Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Mietje Germonpré
- Operational Direction "Earth and History of Life", Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|