1
|
Wu Q, Zhao X, Zhou B, Liao J, Luo Q, Zhao Y, Cai L, Zhai Z, Tong L. A rapid method for assessing seed drought resistance using integrated ID-BOA-SVM. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8224-8233. [PMID: 39498515 DOI: 10.1039/d4ay01455c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
This study investigates the application of near-infrared spectroscopy (NIR) for assessing drought resistance in seeds, aiming to offer a rapid and efficient method suitable for large-scale primary screening. NIR spectroscopy is utilized to analyze four key factors (water, sugars, amino acids content, and genes) associated with maize seed drought responses. Signature NIR bands indicative of drought resistance-related molecules are identified using the Competitive Adaptive Reweighted Sampling (CARS) technique. Furthermore, an Improved Discrete Bayesian Optimization Support Vector Machine (ID-BOA-SVM) classification model is developed to address issues related to sparse features in traditional Bayesian Optimization Support Vector Machines (BOA-SVM). To enhance classification performance, a stacking model integrating Random Forest (RF), ID-BOA-SVM, Logistic Regression (LR), and Gradient Boosted Decision Trees (GBDT) classifiers is constructed, ensuring robustness and minimizing overfitting risks. The model achieves satisfactory recognition accuracy (94.28% accuracy, 94% precision, 94.61% recall, and 94.23% F1-score) even under conditions of substantial interference and dataset variability. This research demonstrates that NIR spectroscopy-derived data can support genetic and physiological studies of drought-resistant seed varieties, facilitating a deeper understanding of drought resistance mechanisms and optimizing breeding strategies.
Collapse
Affiliation(s)
- Qiaohan Wu
- Heilongjiang Bayi Agricultural University, China.
| | - Xiaoyu Zhao
- Heilongjiang Bayi Agricultural University, China.
| | - Biqing Zhou
- Heilongjiang Bayi Agricultural University, China.
| | | | - Qian Luo
- Heilongjiang Bayi Agricultural University, China.
| | - Yue Zhao
- Heilongjiang Bayi Agricultural University, China.
| | - Lijing Cai
- Heilongjiang Bayi Agricultural University, China.
| | - Zhe Zhai
- China Academy of Forestry Sciences, China
| | | |
Collapse
|
2
|
Beć KB, Grabska J, Huck CW. In silico NIR spectroscopy - A review. Molecular fingerprint, interpretation of calibration models, understanding of matrix effects and instrumental difference. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121438. [PMID: 35667136 DOI: 10.1016/j.saa.2022.121438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Quantum mechanical calculations are routinely used as a major support in mid-infrared (MIR) and Raman spectroscopy. In contrast, practical limitations for long time formed a barrier to developing a similar synergy between near-infrared (NIR) spectroscopy and computational chemistry. Recent advances in theoretical methods suitable for calculation of NIR spectra opened the pathway to modeling NIR spectra of various molecules. Accurate theoretical reproduction of NIR spectra of molecules reaching the size of long-chain fatty acids was accomplished so far. In silico NIR spectroscopy, where the spectra are calculated ab initio, provides substantial improvement in our understanding of the overtones and combination bands that overlap in staggering numbers and create complex lineshape typical for NIR spectra. This improves the comprehension of the spectral information enabling access to rich and detail molecular footprint, essential for fundamental research and useful in routine analysis by NIR spectroscopy and chemometrics. This review article summarizes the most recent accomplishments in the emerging field with examples of simulated NIR spectra of molecules reaching long-chain fatty acids and polymers. In addition to detailed NIR band assignments and new physical insights, simulated spectra enable innovative support in applications. Understanding of the difference in the performance observed between miniaturized NIR spectrometers and chemical interpretation of the chemometric models are noteworthy here. These new elements integrated into NIR spectroscopy framework enable a knowledge-based design of the analysis with comprehension of the processed chemical information.
Collapse
Affiliation(s)
- Krzysztof B Beć
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Justyna Grabska
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Christian W Huck
- University of Innsbruck, Institute of Analytical Chemistry and Radiochemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Fusè M, Longhi G, Mazzeo G, Stranges S, Leonelli F, Aquila G, Bodo E, Brunetti B, Bicchi C, Cagliero C, Bloino J, Abbate S. Anharmonic Aspects in Vibrational Circular Dichroism Spectra from 900 to 9000 cm -1 for Methyloxirane and Methylthiirane. J Phys Chem A 2022; 126:6719-6733. [PMID: 36126273 PMCID: PMC9527749 DOI: 10.1021/acs.jpca.2c05332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Vibrational circular dichroism (VCD) spectra and the
corresponding
IR spectra of the chiral isomers of methyloxirane and of methylthiirane
have been reinvestigated, both experimentally and theoretically, with
particular attention to accounting for anharmonic corrections, as
calculated by the GVPT2 approach. De novo recorded VCD spectra in
the near IR (NIR) range regarding CH-stretching overtone transitions,
together with the corresponding NIR absorption spectra, were also
considered and accounted for, both with the GVPT2 and with the local
mode approaches. Comparison of the two methods has permitted us to
better describe the nature of active “anharmonic” modes
in the two molecules and the role of mechanical and electrical anharmonicity
in determining the intensities of VCD and IR/NIR data. Finally, two
nonstandard IR/NIR regions have been investigated: the first one about
≈2000 cm–1, involving mostly two-quanta bending
mode transitions, the second one between 7000 and 7500 cm–1 involving three-quanta transitions containing CH-stretching overtones
and HCC/HCH bending modes.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Stranges
- Dipartimento di Chimica e Tecnologia del Farmaco, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.,IOM-CNR, Laboratorio TASC, Basovizza, 34149 Trieste, Italy
| | - Francesca Leonelli
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Giorgia Aquila
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Enrico Bodo
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Bruno Brunetti
- ISMN-CNR, Università La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9,00124 Torino, Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9,00124 Torino, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123 Brescia, Italy
| |
Collapse
|
4
|
Etsè KS, Zaragoza G, Demonceau A. Novel trans iodo(2-(N-alkylsulfamoyl)phenyl)bis(-triphenylphosphine palladium) complexes: Synthesis, mass spectrometry, X-ray structural description, steric map, near infrared analyses and catalytic activities evaluation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Beć KB, Grabska J, Huck CW. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022; 11:foods11101465. [PMID: 35627034 PMCID: PMC9140213 DOI: 10.3390/foods11101465] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
The ongoing miniaturization of spectrometers creates a perfect synergy with the common advantages of near-infrared (NIR) spectroscopy, which together provide particularly significant benefits in the field of food analysis. The combination of portability and direct onsite application with high throughput and a noninvasive way of analysis is a decisive advantage in the food industry, which features a diverse production and supply chain. A miniaturized NIR analytical framework is readily applicable to combat various food safety risks, where compromised quality may result from an accidental or intentional (i.e., food fraud) origin. In this review, the characteristics of miniaturized NIR sensors are discussed in comparison to benchtop laboratory spectrometers regarding their performance, applicability, and optimization of methodology. Miniaturized NIR spectrometers remarkably increase the flexibility of analysis; however, various factors affect the performance of these devices in different analytical scenarios. Currently, it is a focused research direction to perform systematic evaluation studies of the accuracy and reliability of various miniaturized spectrometers that are based on different technologies; e.g., Fourier transform (FT)-NIR, micro-optoelectro-mechanical system (MOEMS)-based Hadamard mask, or linear variable filter (LVF) coupled with an array detector, among others. Progressing technology has been accompanied by innovative data-analysis methods integrated into the package of a micro-NIR analytical framework to improve its accuracy, reliability, and applicability. Advanced calibration methods (e.g., artificial neural networks (ANN) and nonlinear regression) directly improve the performance of miniaturized instruments in challenging analyses, and balance the accuracy of these instruments toward laboratory spectrometers. The quantum-mechanical simulation of NIR spectra reveals the wavenumber regions where the best-correlated spectral information resides and unveils the interactions of the target analyte with the surrounding matrix, ultimately enhancing the information gathered from the NIR spectra. A data-fusion framework offers a combination of spectral information from sensors that operate in different wavelength regions and enables parallelization of spectral pretreatments. This set of methods enables the intelligent design of future NIR analyses using miniaturized instruments, which is critically important for samples with a complex matrix typical of food raw material and shelf products.
Collapse
|
6
|
Beć KB, Grabska J, Badzoka J, Huck CW. Spectra-structure correlations in NIR region of polymers from quantum chemical calculations. The cases of aromatic ring, C=O, C≡N and C-Cl functionalities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120085. [PMID: 34174679 PMCID: PMC7616891 DOI: 10.1016/j.saa.2021.120085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR) spectroscopy is a valued analytical tool in various applications involving polymers. However, complex nature of NIR spectra imposes difficulties in their direct interpretation. Here, anharmonic quantum chemical calculations are used to simulate NIR spectra of nine polymers; acrylonitrile butadiene styrene (ABS), ethylene-vinyl acetate (EVAC), polycarbonate (PC), polyethylene terephthalate (PET), polylactide or polylactic acid (PLA), polymethylmethacrylate (PMMA), polyoxymethylene (POM), polystyrene (PS) and polyvinylchloride (PVC). The generalized spectra-structure correlations are derived for these systems with focus given to the manifestation in NIR spectra of aromatic ring, C=O, C≡N and C-Cl functionalities. It is concluded that the nature of NIR polymer bands is only moderately sensitive to the remote chemical neighborhood. The majority of NIR absorption of polymers originates from binary combination bands, while the first overtones are meaningful only in ca. 6200-5500 cm-1 region. The contribution of the overtone bands is relatively higher for the polymers bearing aromatic rings because of higher intensity of C-H stretching overtones. Highly characteristic combination bands of the modes localized in aromatic ring (ring deformation and CH stretching) are relatively independent on the remaining structure of the polymer. The combination bands originating from C=O group are more sensitive to the chemical neighborhood in near proximity, forming a useful fingerprint for a specific polymer. In contrast, the vibrational bands of C≡N functionality are far less useful in NIR region than in infrared (IR) region. With aid of the calculated absorption bands, structural specificity of NIR spectroscopy of polymers can be markedly improved.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Jovan Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Beć KB, Grabska J, Huck CW, Mazurek S, Czarnecki MA. Anharmonicity and Spectra-Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K 3). Molecules 2021; 26:6779. [PMID: 34833871 PMCID: PMC8620535 DOI: 10.3390/molecules26226779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K3) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600-2600 cm-1. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000-3600 and 2800-1800 cm-1 ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, 6020 Innsbruck, Austria; (J.G.); (C.W.H.)
| | - Justyna Grabska
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, 6020 Innsbruck, Austria; (J.G.); (C.W.H.)
| | - Christian W. Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, 6020 Innsbruck, Austria; (J.G.); (C.W.H.)
| | - Sylwester Mazurek
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland;
| | | |
Collapse
|
8
|
Grabska J, Beć KB, Ozaki Y, Huck CW. Anharmonic DFT Study of Near-Infrared Spectra of Caffeine: Vibrational Analysis of the Second Overtones and Ternary Combinations. Molecules 2021; 26:molecules26175212. [PMID: 34500645 PMCID: PMC8433751 DOI: 10.3390/molecules26175212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Anharmonic quantum chemical calculations were employed to simulate and interpret a near-infrared (NIR) spectrum of caffeine. First and second overtones, as well as binary and ternary combination bands, were obtained, accurately reproducing the lineshape of the experimental spectrum in the region of 10,000–4000 cm−1 (1000–2500 nm). The calculations enabled performing a detailed analysis of NIR spectra of caffeine, including weak bands due to the second overtones and ternary combinations. A highly convoluted nature of NIR spectrum of caffeine was unveiled, with numerous overlapping bands found beneath the observed spectral lineshape. To properly reflect that intrinsic complexity, the band assignments were provided in the form of heat maps presenting the contributions to the NIR spectrum from various kinds of vibrational transitions. These contributions were also quantitatively assessed in terms of the integral intensities. It was found that the combination bands provide the decisively dominant contributions to the NIR spectrum of caffeine. The first overtones gain significant importance between 6500–5500 cm−1, while the second overtones are meaningful in the higher wavenumber regions, particularly in the 10,000–7000 cm−1 region. The obtained detailed band assignments enabled deep interpretation of the absorption regions of caffeine identified in the literature as meaningful for analytical applications of NIR spectroscopy focused on quantitative analysis of caffeine content in drugs and natural products.
Collapse
Affiliation(s)
- Justyna Grabska
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
- Correspondence:
| | - Krzysztof B. Beć
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan;
- Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute 480-1192, Aichi, Japan
| | - Christian W. Huck
- CCB—Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, 6020 Innsbruck, Austria; (K.B.B.); (C.W.H.)
| |
Collapse
|
9
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
10
|
Beć KB, Grabska J, Huck CW. Current and future research directions in computer-aided near-infrared spectroscopy: A perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119625. [PMID: 33706116 DOI: 10.1016/j.saa.2021.119625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The present review aims to draw a perspective on the vibrational spectroscopy combined with the tools of computational chemistry. This includes an overview of the accomplishments made so far, the assessment of the present development trends and the prospects for continuing these advances. State-of-the-art methods, current challenges and the expected future advances are evaluated from the point-of-view of the practical application in vibrational spectroscopy. A special attention is given to near-infrared (NIR) spectroscopy, which occupies a distinct position among the techniques of vibrational spectroscopy. As the result of intrinsically complex spectra, reliance on the anharmonicity as well as keen interest given to complex materials, NIR spectroscopy may particularly benefit from computational chemistry. The present key limitations hindering development of NIR spectroscopy are identified; these constitute primarily the limit in the treatable system size and the inability to effectively include chemical matrix effects. Given the expanding role of NIR spectroscopy in science and industry, lifting these limitations would directly enhance the general potential of this technique.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Adegoke JA, Kochan K, Heraud P, Wood BR. A Near-Infrared "Matchbox Size" Spectrometer to Detect and Quantify Malaria Parasitemia. Anal Chem 2021; 93:5451-5458. [PMID: 33759513 DOI: 10.1021/acs.analchem.0c05103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New point-of-care diagnostic approaches for malaria that are sensitive to low parasitemia, easy to use in a field setting, and affordable are urgently required to meet the World Health Organization's objective of reducing malaria cases and related life losses by 90% globally on or before 2030. In this study, an inexpensive "matchbox size" near-infrared (NIR) spectrophotometer was used for the first time to detect and quantify malaria infection in vitro from isolated dried red blood cells using a fingerpick volume of blood. This the first study to apply a miniaturized NIR device to diagnose a parasitic infection and identify marker bands indicative of malaria infection in the NIR region. An NIR device has many advantages including wavelength accuracy and repeatability, speed, resolution, and a greatly improved signal-to-noise ratio compared to existing spectroscopic options. Using multivariate data analysis, we discriminated control red blood cells from infected cells and established the limit of detection of the technique. Principal component analysis displayed a good separation between the infected and uninfected RBCs, while partial least-squares regression analysis yielded a robust parasitemia prediction with root-mean-square error of prediction values of 0.446 and 0.001% for the higher and lower parasitemia models, respectively. The R2 values of the higher and lower parasitemia models were 0.947 and 0.931, respectively. Finally, an estimated parasitemia detection limit of 0.00001% and a qunatification limit of 0.001% was achieved; to ascertain the true efficacy of the technique for point-of-care screening, clinical studies using large patient numbers are required, which is the subject of future studies.
Collapse
Affiliation(s)
- John A Adegoke
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology and the Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Characterization of thymine microcrystals by CARS and SHG microscopy. Sci Rep 2020; 10:17097. [PMID: 33051591 PMCID: PMC7553945 DOI: 10.1038/s41598-020-74305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023] Open
Abstract
Identification of chemically homologous microcrystals in a polycrystal sample is a big challenge and requires developing specific highly sensitive tools. Second harmonic (SHG) and coherent anti-Stokes Raman scattering (CARS) spectroscopy can be used to reveal arrangement of thymine molecules, one of the DNA bases, in microcrystalline sample. Strong dependence of CARS and SHG intensity on the orientation of the linear polarization of the excitation light allows to obtain high resolution images of thymine microcrystals by additionally utilizing the scanning microscopy technique. Experimental findings and theoretical interpretation of the results are compared. Presented experimental data together with quantum chemistry-based theoretical interpretation allowed us to determine the most probable organization of the thymine molecules.
Collapse
|
13
|
Beć KB, Grabska J, Huck CW, Czarnecki MA. Effect of conformational isomerism on NIR spectra of ethanol isotopologues. Spectroscopic and anharmonic DFT study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Beć KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020; 25:E2948. [PMID: 32604876 PMCID: PMC7357077 DOI: 10.3390/molecules25122948] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) spectroscopy occupies a specific spot across the field of bioscience and related disciplines. Its characteristics and application potential differs from infrared (IR) or Raman spectroscopy. This vibrational spectroscopy technique elucidates molecular information from the examined sample by measuring absorption bands resulting from overtones and combination excitations. Recent decades brought significant progress in the instrumentation (e.g., miniaturized spectrometers) and spectral analysis methods (e.g., spectral image processing and analysis, quantum chemical calculation of NIR spectra), which made notable impact on its applicability. This review aims to present NIR spectroscopy as a matured technique, yet with great potential for further advances in several directions throughout broadly understood bio-applications. Its practical value is critically assessed and compared with competing techniques. Attention is given to link the bio-application potential of NIR spectroscopy with its fundamental characteristics and principal features of NIR spectra.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| | | | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| |
Collapse
|