1
|
Cardellini J, Dallari C, De Santis I, Riccio L, Ceni C, Morrone A, Calamai M, Pavone FS, Credi C, Montis C, Berti D. Hybrid lipid-AuNP clusters as highly efficient SERS substrates for biomedical applications. Nat Commun 2024; 15:7975. [PMID: 39266504 PMCID: PMC11392932 DOI: 10.1038/s41467-024-52205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Although Surface Enhanced Raman Scattering (SERS) is widely applied for ultrasensitive diagnostics and imaging, its potential is largely limited by the difficult preparation of SERS tags, typically metallic nanoparticles (NPs) functionalized with Raman-active molecules (RRs), whose production often involves complex synthetic approaches, low colloidal stability and poor reproducibility. Here, we introduce LipoGold Tags, a simple platform where gold NPs (AuNPs) clusters form via self-assembly on lipid vesicle. RRs embedded in the lipid bilayer experience enhanced electromagnetic field, significantly increasing their Raman signals. We modulate RRs and lipid vesicle concentrations to achieve optimal SERS enhancement and we provide robust structural characterization. We further demonstrate the versatility of LipoGold Tags by functionalizing them with biomolecular probes, including antibodies. As proof of concept, we successfully detect intracellular GM1 alterations, distinguishing healthy donors from patients with infantile GM1 gangliosidosis, showcasing LipoGold Tags as advancement in SERS probes production.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Caterina Dallari
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Lorenzo Riccio
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Costanza Ceni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martino Calamai
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Hosseini K, Fallahi J, Aligholi H, Heidari Z, Nadimi E, Safari F, Sisakht M, Atapour A, Khajeh S, Tabei SMB, Razban V. Creation of an in vitro model of GM1 gangliosidosis by CRISPR/Cas9 knocking-out the GLB1 gene in SH-SY5Y human neuronal cell line. Cell Biochem Funct 2024; 42:e4102. [PMID: 39076066 DOI: 10.1002/cbf.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of β-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of β-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Zagaynova VA, Nasykhova YA, Tonyan ZN, Danilova MM, Dvoynova NM, Lazareva TE, Ivashchenko TE, Shabanova ES, Krikheli IO, Lesik EA, Bespalova ON, Kogan IY, Glotov AS. Case report: Preimplantation genetic testing for infantile GM1 gangliosidosis. Front Genet 2024; 15:1344051. [PMID: 38404665 PMCID: PMC10884188 DOI: 10.3389/fgene.2024.1344051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of β-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot» in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.
Collapse
Affiliation(s)
- Valeria A. Zagaynova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ceni C, Clemente F, Mangiavacchi F, Matassini C, Tonin R, Caciotti A, Feo F, Coviello D, Morrone A, Cardona F, Calamai M. Identification of GM1-Ganglioside Secondary Accumulation in Fibroblasts from Neuropathic Gaucher Patients and Effect of a Trivalent Trihydroxypiperidine Iminosugar Compound on Its Storage Reduction. Molecules 2024; 29:453. [PMID: 38257371 PMCID: PMC10818339 DOI: 10.3390/molecules29020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the β-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on β-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.
Collapse
Affiliation(s)
- Costanza Ceni
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Francesca Clemente
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Francesca Mangiavacchi
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Camilla Matassini
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Rodolfo Tonin
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
| | - Anna Caciotti
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
| | - Federica Feo
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (R.T.); (A.C.); (F.F.); (A.M.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy
| | - Francesca Cardona
- Department of Chemistry “U. Schiff” (DICUS), University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (C.C.); (F.M.); (C.M.); (F.C.)
| | - Martino Calamai
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council (CNR-INO), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Fluorescent In Situ Staining and Flow Cytometric Procedures as New Pre-Diagnostic Tests for Sialidosis, GM1 Gangliosidosis and Niemann–Pick Type C. Biomedicines 2022; 10:biomedicines10081962. [PMID: 36009508 PMCID: PMC9405762 DOI: 10.3390/biomedicines10081962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Early diagnosis is essential in the field of lysosomal storage disorders for the proper management of patients and for starting therapies before irreversible damage occurs, particularly in neurodegenerative conditions. Currently, specific biomarkers for the diagnosis of lysosomal storage disorders are lacking in routine laboratory practice, except for enzymatic tests, which are available only in specialized metabolic centers. Recently, we established a method for measuring and verifying changes in GM1 ganglioside levels in peripheral blood lymphocytes in patients with GM1 gangliosidosis. However, fresh blood is not always available, and using frozen/thawed lymphocytes can lead to inaccurate results. Methods: We used frozen/thawed fibroblasts obtained from stored biopsies to explore the feasibility of fluorescent imaging and flow-cytometric methods to track changes in storage materials in fibroblasts from patients with three lysosomal neurodegenerative conditions: GM1 gangliosidosis, Sialidosis, and Niemann–Pick type C. We used specific markers for each pathology. Results and Conclusions: We demonstrated that with our methods, it is possible to clearly distinguish the levels of accumulated metabolites in fibroblasts from affected and unaffected patients for all the three pathologies considered. Our methods proved to be rapid, sensitive, unbiased, and potentially applicable to other LSDs.
Collapse
|
6
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Nicoli ER, Annunziata I, d’Azzo A, Platt FM, Tifft CJ, Stepien KM. GM1 Gangliosidosis-A Mini-Review. Front Genet 2021; 12:734878. [PMID: 34539759 PMCID: PMC8446533 DOI: 10.3389/fgene.2021.734878] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
GM1 gangliosidosis is a progressive, neurosomatic, lysosomal storage disorder caused by mutations in the GLB1 gene encoding the enzyme β-galactosidase. Absent or reduced β-galactosidase activity leads to the accumulation of β-linked galactose-containing glycoconjugates including the glycosphingolipid (GSL) GM1-ganglioside in neuronal tissue. GM1-gangliosidosis is classified into three forms [Type I (infantile), Type II (late-infantile and juvenile), and Type III (adult)], based on the age of onset of clinical symptoms, although the disorder is really a continuum that correlates only partially with the levels of residual enzyme activity. Severe neurocognitive decline is a feature of Type I and II disease and is associated with premature mortality. Most of the disease-causing β-galactosidase mutations reported in the literature are clustered in exons 2, 6, 15, and 16 of the GLB1 gene. So far 261 pathogenic variants have been described, missense/nonsense mutations being the most prevalent. There are five mouse models of GM1-gangliosidosis reported in the literature generated using different targeting strategies of the Glb1 murine locus. Individual models differ in terms of age of onset of the clinical, biochemical, and pathological signs and symptoms, and overall lifespan. However, they do share the major abnormalities and neurological symptoms that are characteristic of the most severe forms of GM1-gangliosidosis. These mouse models have been used to study pathogenic mechanisms, to identify biomarkers, and to evaluate therapeutic strategies. Three GLB1 gene therapy trials are currently recruiting Type I and Type II patients (NCT04273269, NCT03952637, and NCT04713475) and Type II and Type III patients are being recruited for a trial utilizing the glucosylceramide synthase inhibitor, venglustat (NCT04221451).
Collapse
Affiliation(s)
- Elena-Raluca Nicoli
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Cynthia J. Tifft
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karolina M. Stepien
- Adult Inherited Metabolic Disorders, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
10
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|