1
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
2
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
3
|
Baig MS, Dou Y, Bergey BG, Bahar R, Burgener JM, Moallem M, McNeil JB, Akhter A, Burke GL, Sri Theivakadadcham VS, Richard P, D’Amours D, Rosonina E. Dynamic sumoylation of promoter-bound general transcription factors facilitates transcription by RNA polymerase II. PLoS Genet 2021; 17:e1009828. [PMID: 34587155 PMCID: PMC8505008 DOI: 10.1371/journal.pgen.1009828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Transcription-related proteins are frequently identified as targets of sumoylation, including multiple subunits of the RNA polymerase II (RNAPII) general transcription factors (GTFs). However, it is not known how sumoylation affects GTFs or whether they are sumoylated when they assemble at promoters to facilitate RNAPII recruitment and transcription initiation. To explore how sumoylation can regulate transcription genome-wide, we performed SUMO ChIP-seq in yeast and found, in agreement with others, that most chromatin-associated sumoylated proteins are detected at genes encoding tRNAs and ribosomal proteins (RPGs). However, we also detected 147 robust SUMO peaks at promoters of non-ribosomal protein-coding genes (non-RPGs), indicating that sumoylation also regulates this gene class. Importantly, SUMO peaks at non-RPGs align specifically with binding sites of GTFs, but not other promoter-associated proteins, indicating that it is GTFs specifically that are sumoylated there. Predominantly, non-RPGs with SUMO peaks are among the most highly transcribed, have high levels of TFIIF, and show reduced RNAPII levels when cellular sumoylation is impaired, linking sumoylation with elevated transcription. However, detection of promoter-associated SUMO by ChIP might be limited to sites with high levels of substrate GTFs, and promoter-associated sumoylation at non-RPGs may actually be far more widespread than we detected. Among GTFs, we found that TFIIF is a major target of sumoylation, specifically at lysines 60/61 of its Tfg1 subunit, and elevating Tfg1 sumoylation resulted in decreased interaction of TFIIF with RNAPII. Interestingly, both reducing promoter-associated sumoylation, in a sumoylation-deficient Tfg1-K60/61R mutant strain, and elevating promoter-associated SUMO levels, by constitutively tethering SUMO to Tfg1, resulted in reduced RNAPII occupancy at non-RPGs. This implies that dynamic GTF sumoylation at non-RPG promoters, not simply the presence or absence of SUMO, is important for maintaining elevated transcription. Together, our findings reveal a novel mechanism of regulating the basal transcription machinery through sumoylation of promoter-bound GTFs. Six general transcription factors (GTFs) assemble at promoters of protein-coding genes to enable recruitment of RNA polymerase II (RNAPII) and facilitate transcription initiation, but little is known about how they are regulated once promoter-bound. Here, we demonstrate that, in budding yeast, some components of GTFs are post-translationally modified by the SUMO peptide specifically when they are assembled at promoters. We determined that the large subunit of TFIIF, Tgf1, is the major target of sumoylation among GTFs and that increasing Tfg1 sumoylation reduces the interaction of TFIIF with RNAPII. Consistent with this, we found that increasing levels of SUMO at promoters of some protein-coding genes, by permanently attaching SUMO to Tfg1, resulted in reduced RNAPII levels associated with those genes. On the other hand, reducing promoter-associated sumoylation, by mutating SUMO-modified residues on Tfg1, also reduced RNAPII occupancy levels. Explaining these apparently contradictory findings, we propose that dynamic sumoylation of promoter-bound GTFs, not merely the presence or absence of SUMO, is important for facilitating rearrangements of promoter-bound GTF components that enhance transcription. Together, our data reveal a novel level of regulating the basal transcription machinery through SUMO modification at promoters of protein-coding genes.
Collapse
Affiliation(s)
- Mohammad S. Baig
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Yimo Dou
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Russell Bahar
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Marjan Moallem
- Department of Biology, York University, Toronto, Ontario, Canada
| | - James B. McNeil
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Akhi Akhter
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | - Patricia Richard
- Stellate Therapeutics, New York, New York, United States of America
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emanuel Rosonina
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
4
|
Abstract
Proteins covalently attached to DNA, also known as DNA-protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, OX3 7DQ, Oxford, UK
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, OX3 7DQ, Oxford, UK.
| |
Collapse
|