1
|
McSweeney AM, Eruera AR, McKenzie-Goldsmith GM, Bouwer JC, Brown SHJ, Stubbing LA, Hubert JG, Shrestha R, Sparrow KJ, Brimble MA, Harris LD, Evans GB, Bostina M, Krause KL, Ward VK. Activity and cryo-EM structure of the polymerase domain of the human norovirus ProPol precursor. J Virol 2024; 98:e0119324. [PMID: 39475276 PMCID: PMC11575396 DOI: 10.1128/jvi.01193-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Human norovirus (HuNV) is a leading cause of acute gastroenteritis worldwide with most infections caused by genogroup I and genogroup II (GII) viruses. Replication of HuNV generates both precursor and mature proteins during processing of the viral polyprotein that are essential to the viral lifecycle. One such precursor is protease-polymerase (ProPol), a multi-functional enzyme comprised of the norovirus protease and polymerase proteins. This work investigated HuNV ProPol by determining the de novo polymerase activity, protein structure, and antiviral inhibition profile. The GII ProPol de novo enzymatic efficiencies (kcat/Km) for RNA templates and ribonucleotides were equal or superior to those of mature GII Pol on all templates measured. Furthermore, GII ProPol was the only enzyme form active on a poly(A) template. The first structure of the polymerase domain of HuNV ProPol in the unliganded state was determined by cryo-electron microscopy at a resolution of 2.6 Å. The active site and overall architecture of ProPol are similar to those of mature Pol. In addition, both galidesivir triphosphate and PPNDS inhibited polymerase activity of GII ProPol, with respective half-maximal inhibitory concentration (IC50) values of 247.5 µM and 3.8 µM. In both instances, the IC50 obtained with ProPol was greater than that of mature Pol, indicating that ProPol can exhibit different responses to antivirals. This study provides evidence that HuNV ProPol possesses overlapping and unique enzyme properties compared with mature Pol and will aid our understanding of the replication cycle of the virus.IMPORTANCEDespite human norovirus (HuNV) being a leading cause of acute gastroenteritis, the molecular mechanisms surrounding replication are not well understood. Reports have shown that HuNV replication generates precursor proteins from the viral polyprotein, one of which is the protease-polymerase (ProPol). This precursor is important for viral replication; however, the polymerase activity and structural differences between the precursor and mature forms of the polymerase remain to be determined. We show that substrate specificity and polymerase activity of ProPol overlap with, but is distinct from, the mature polymerase. We employ cryo-electron microscopy to resolve the first structure of the polymerase domain of ProPol. This shows a polymerase architecture similar to mature Pol, indicating that the interaction of the precursor with substrates likely defines its activity. We also show that ProPol responds differently to antivirals than mature polymerase. Altogether, these findings enhance our understanding of the function of the important norovirus ProPol precursor.
Collapse
Affiliation(s)
- Alice M McSweeney
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Geena M McKenzie-Goldsmith
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - James C Bouwer
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Louise A Stubbing
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinu Shrestha
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
In Silico Screening and Molecular Dynamics Simulation Studies in the Identification of Natural Compound Inhibitors Targeting the Human Norovirus RdRp Protein to Fight Gastroenteritis. Int J Mol Sci 2023; 24:ijms24055003. [PMID: 36902433 PMCID: PMC10002960 DOI: 10.3390/ijms24055003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Norovirus (HNoV) is a leading cause of gastroenteritis globally, and there are currently no treatment options or vaccines available to combat it. RNA-dependent RNA polymerase (RdRp), one of the viral proteins that direct viral replication, is a feasible target for therapeutic development. Despite the discovery of a small number of HNoV RdRp inhibitors, the majority of them have been found to possess a little effect on viral replication, owing to low cell penetrability and drug-likeness. Therefore, antiviral agents that target RdRp are in high demand. For this purpose, we used in silico screening of a library of 473 natural compounds targeting the RdRp active site. The top two compounds, ZINC66112069 and ZINC69481850, were chosen based on their binding energy (BE), physicochemical and drug-likeness properties, and molecular interactions. ZINC66112069 and ZINC69481850 interacted with key residues of RdRp with BEs of -9.7, and -9.4 kcal/mol, respectively, while the positive control had a BE of -9.0 kcal/mol with RdRp. In addition, hits interacted with key residues of RdRp and shared several residues with the PPNDS, the positive control. Furthermore, the docked complexes showed good stability during the molecular dynamic simulation of 100 ns. ZINC66112069 and ZINC69481850 could be proven as potential inhibitors of the HNoV RdRp in future antiviral medication development investigations.
Collapse
|
3
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Giancotti G, Nannetti G, Padalino G, Landini M, Santos-Ferreira N, Van Dycke J, Naccarato V, Patel U, Silvestri R, Neyts J, Gozalbo-Rovira R, Rodríguez-Díaz J, Rocha-Pereira J, Brancale A, Ferla S, Bassetto M. Structural Investigations on Novel Non-Nucleoside Inhibitors of Human Norovirus Polymerase. Viruses 2022; 15:74. [PMID: 36680114 PMCID: PMC9864251 DOI: 10.3390/v15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Human norovirus is the first cause of foodborne disease worldwide, leading to extensive outbreaks of acute gastroenteritis, and causing around 200,000 children to die annually in developing countries. No specific vaccines or antiviral agents are currently available, with therapeutic options limited to supportive care to prevent dehydration. The infection can become severe and lead to life-threatening complications in young children, the elderly and immunocompromised individuals, leading to a clear need for antiviral agents, to be used as treatments and as prophylactic measures in case of outbreaks. Due to the key role played by the viral RNA-dependent RNA polymerase (RdRp) in the virus life cycle, this enzyme is a promising target for antiviral drug discovery. In previous studies, following in silico investigations, we identified different small-molecule inhibitors of this enzyme. In this study, we rationally modified five identified scaffolds, to further explore structure-activity relationships, and to enhance binding to the RdRp. The newly designed compounds were synthesized according to multiple-step synthetic routes and evaluated for their inhibition of the enzyme in vitro. New inhibitors with low micromolar inhibitory activity of the RdRp were identified, which provide a promising basis for further hit-to-lead optimization.
Collapse
Affiliation(s)
- Gilda Giancotti
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Giulio Nannetti
- Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Martina Landini
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Nanci Santos-Ferreira
- KU Leuven—Rega Institute, Department of Microbiology, Immunology and Transplantation, 3000 Leuven, Belgium
| | - Jana Van Dycke
- KU Leuven—Rega Institute, Department of Microbiology, Immunology and Transplantation, 3000 Leuven, Belgium
| | - Valentina Naccarato
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Usheer Patel
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Johan Neyts
- KU Leuven—Rega Institute, Department of Microbiology, Immunology and Transplantation, 3000 Leuven, Belgium
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jésus Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Joana Rocha-Pereira
- KU Leuven—Rega Institute, Department of Microbiology, Immunology and Transplantation, 3000 Leuven, Belgium
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Vysoká Škola Chemiko-Technologiká v Praze, 165 00 Prague, Czech Republic
| | - Salvatore Ferla
- Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Marcella Bassetto
- Department of Chemistry, College of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
5
|
Callis TB, Garrett TR, Montgomery AP, Danon JJ, Kassiou M. Recent Scaffold Hopping Applications in Central Nervous System Drug Discovery. J Med Chem 2022; 65:13483-13504. [PMID: 36206553 DOI: 10.1021/acs.jmedchem.2c00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of bioisosterism and the implementation of bioisosteric replacement is fundamental to medicinal chemistry. The exploration of bioisosteres is often used to probe key structural features of candidate pharmacophores and enhance pharmacokinetic properties. As the understanding of bioisosterism has evolved, capabilities to undertake more ambitious bioisosteric replacements have emerged. Scaffold hopping is a broadly used term in the literature referring to a variety of different bioisosteric replacement strategies, ranging from simple heterocyclic replacements to topological structural overhauls. In this work, we have highlighted recent applications of scaffold hopping in the central nervous system drug discovery space. While we have highlighted the benefits of using scaffold hopping approaches in central nervous system drug discovery, these are also widely applicable to other medicinal chemistry fields. We also recommend a shift toward the use of more refined and meaningful terminology within the realm of scaffold hopping.
Collapse
Affiliation(s)
- Timothy B Callis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Taylor R Garrett
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Pathania S, Rawal RK, Singh PK. RdRp (RNA-dependent RNA polymerase): A key target providing anti-virals for the management of various viral diseases. J Mol Struct 2022; 1250:131756. [PMID: 34690363 PMCID: PMC8520695 DOI: 10.1016/j.molstruc.2021.131756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
Abstract
With the arrival of the Covid-19 pandemic, anti-viral agents have regained center stage in the arena of medicine. Out of the various drug targets involved in managing RNA-viral infections, the one that dominates almost all RNA viruses is RdRp (RNA-dependent RNA polymerase). RdRp are proteins that are involved in the replication of RNA-based viruses. Inhibition of RdRps has been an integral approach for managing various viral infections such as dengue, influenza, HCV (Hepatitis), BVDV, etc. Inhibition of the coronavirus RdRp is currently rigorously explored for the treatment of Covid-19 related complications. So, keeping in view the importance and current relevance of this drug target, we have discussed the importance of RdRp in developing anti-viral agents against various viral diseases. Different reported inhibitors have also been discussed, and emphasis has been laid on highlighting the inhibitor's pharmacophoric features and SAR profile.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ravindra K. Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Haryana, India,CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India,Corresponding authors
| | - Pankaj Kumar Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, FI-20014, Finland,Corresponding authors
| |
Collapse
|
7
|
Structure-Activity Relationship Studies on Novel Antiviral Agents for Norovirus Infections. Microorganisms 2021; 9:microorganisms9091795. [PMID: 34576691 PMCID: PMC8468020 DOI: 10.3390/microorganisms9091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Human norovirus is the leading cause of acute gastroenteritis worldwide, affecting every year 685 million people. Norovirus outbreaks are associated with very significant economic losses, with an estimated societal cost of 60 billion USD per year. Despite this, no therapeutic options or vaccines are currently available to treat or prevent this infection. An antiviral therapy that can be used as treatment and as a prophylactic measure in the case of outbreaks is urgently needed. We previously described the computer-aided design and synthesis of novel small-molecule agents able to inhibit the replication of human norovirus in cell-based systems. These compounds are non-nucleoside inhibitors of the viral polymerase and are characterized by a terminal para-substituted phenyl group connected to a central phenyl ring by an amide-thioamide linker, and a terminal thiophene ring. Here we describe new modifications of these scaffolds focused on exploring the role of the substituent at the para position of the terminal phenyl ring and on removing the thioamide portion of the amide-thioamide linker, to further explore structure-activity relationships (SARs) and improve antiviral properties. According to three to four-step synthetic routes, we prepared thirty novel compounds, which were then evaluated against the replication of both murine (MNV) and human (HuNoV) norovirus in cells. Derivatives in which the terminal phenyl group has been replaced by an unsubstituted benzoxazole or indole, and the thioamide component of the amide-thioamide linker has been removed, showed promising results in inhibiting HuNoV replication at low micromolar concentrations. Particularly, compound 28 was found to have an EC50 against HuNoV of 0.9 µM. Although the most active novel derivatives were also associated with an increased cytotoxicity in the human cell line, these compounds represent a very promising starting point for the development of new analogues with reduced cytotoxicity and improved selectivity indexes. In addition, the experimental biological data have been used to create an initial 3D quantitative structure-activity relationship model, which could be used to guide the future design of novel potential anti-norovirus agents.
Collapse
|
8
|
Novel Nucleoside Analogues as Effective Antiviral Agents for Zika Virus Infections. Molecules 2020; 25:molecules25204813. [PMID: 33092055 PMCID: PMC7594033 DOI: 10.3390/molecules25204813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/17/2023] Open
Abstract
Previously considered a neglected flavivirus, Zika virus has recently emerged as a public health concern due to its ability to spread rapidly and cause severe neurological disorders, such as microcephaly in newborn babies from infected mothers, and Guillain-Barré syndrome in adults. Despite extensive efforts towards the identification of effective therapies, specific antivirals are still not available. As part of ongoing medicinal chemistry studies to identify new antiviral agents, we screened against Zika virus replication in vitro in a targeted internal library of small-molecule agents, comprising both nucleoside and non-nucleoside agents. Among the compounds evaluated, novel aryloxyphosphoramidate prodrugs of the nucleosides 2′-C-methyl-adenosine, 2-CMA, and 7-deaza-2′C-methyl-adenosine, 7-DMA, were found to significantly inhibit the virus-induced cytopathic effect in multiple relevant cell lines. In addition, one of these prodrugs exhibits a synergistic antiviral effect against Zika virus when applied in combination with an indirect antiviral agent, a l-dideoxy bicyclic pyrimidine nucleoside analogue, which potently inhibits vaccinia and measles viruses in vitro by targeting a host pathway. Our findings provide a solid basis for further development of an antiviral therapy for Zika virus infections, possibly exploiting a dual approach combining two different agents, one targeting the viral polymerase (direct-acting antiviral), the second targeting a host-directed autophagy mechanism.
Collapse
|