1
|
Wei J, Liu G, Sun M, Wang H, Yang P, Cheng S, Huang L, Wei S, Liu D. Comprehensive analysis of morphology, transcriptomics, and metabolomics of banana ( Musa spp.) molecular mechanisms related to plant height. FRONTIERS IN PLANT SCIENCE 2025; 16:1509193. [PMID: 40201783 PMCID: PMC11975952 DOI: 10.3389/fpls.2025.1509193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/03/2025] [Indexed: 04/10/2025]
Abstract
Introduction Plant height is an important agronomic trait that not only affects crop yield but is also related to crop resistance to abiotic and biotic stresses. Methods In this study, we analyzed the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) between Brazilian banana and local dwarf banana (Df19) through transcriptomics and metabolomics, and combined morphological differences and endogenous hormone content to analyze and discuss themolecular mechanisms controlling banana height. Results Sequencing data showed that a total of 2851 DEGs and 1037 DAMs were detected between Brazilian banana and local dwarf banana (Df19). The main differential biological pathways of DEGs involve plant hormone signaling transduction, Cutin, suberin and wax biosynthesis, phenylpropanoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling pathway in plants, amino sugar and nucleotide sugar metabolism, etc. DAMs were mainly enriched in ATP binding cassette (ABC) transporters, amino and nucleotide sugar metabolism, glycerophospholipid metabolism, lysine degradation, and phenylalanine metabolism. Discussion Our analysis results indicate that banana plant height is the result of the synergistic effects of hormones such as abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid (IAA), jasmonic acid (JA), brassinosteroids (BR) and other plant hormones related to growth. In addition, transcription factors and ABC transporters may also play important regulatory roles in regulating the height of banana plants.
Collapse
Affiliation(s)
- Junya Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Guoyin Liu
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| | - Mingzhen Sun
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| | - Hao Wang
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| | - Ping Yang
- School of Design, Hainan Vocational University of Science and Technology, Haikou, Hainan, China
| | - Shimin Cheng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Lina Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Shouxing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/National Key Laboratory for Tropical Crop Breeding/National Tropical Fruit Improvement Center/Key Laboratory of Crop Genetic Resources and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/Key Laboratory of Genetic Improvement and Innovation of Tropical Crop Resources of Hainan Province, Haikou, Hainan, China
| | - Debing Liu
- Tropical Agriculture and Forestry College, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
Liang Z, Wang Q, Sun M, Du R, Jin W, Liu S. Transcriptome and metabolome profiling reveal the effects of hormones on current-year shoot growth in Chinese 'Cuiguan' pear grafted onto vigorous rootstock 'Duli' and dwarf rootstock 'Quince A'. BMC PLANT BIOLOGY 2024; 24:169. [PMID: 38443784 PMCID: PMC10913655 DOI: 10.1186/s12870-024-04858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Dwarf rootstocks have important practical significance for high-density planting in pear orchards. The shoots of 'Cuiguan' grafted onto the dwarf rootstock were shorter than those grafted onto the vigorous rootstock. However, the mechanism of shorter shoot formation is not clear. RESULTS In this study, the current-year shoot transcriptomes and phytohormone contents of 'CG‒QA' ('Cuiguan' was grafted onto 'Quince A', and 'Hardy' was used as interstock) and 'CG‒DL' ('Cuiguan' was grafted onto 'Duli', and 'Hardy' was used as interstock) were compared. The transcriptome results showed that a total of 452 differentially expressed genes (DEGs) were identified, including 248 downregulated genes and 204 upregulated genes; the plant hormone signal transduction and zeatin biosynthesis pathways were significantly enriched in the top 20 KEGG enrichment terms. Abscisic acid (ABA) was the most abundant hormone in 'CG‒QA' and 'CG‒DL'; auxin and cytokinin (CTK) were the most diverse hormones; additionally, the contents of ABA, auxin, and CTK in 'CG‒DL' were higher than those in 'CG‒QA', while the fresh shoot of 'CG‒QA' accumulated more gibberellin (GA) and salicylic acid (SA). Metabolome and transcriptome co-analysis identified three key hormone-related DEGs, of which two (Aldehyde dehydrogenase gene ALDH3F1 and YUCCA2) were upregulated and one (Cytokinin oxidase/dehydrogenase gene CKX3) was downregulated. CONCLUSIONS Based on the results of transcriptomic and metabolomic analysis, we found that auxin and CTK mainly regulated the shoot differences of 'CG-QA' and 'CG-DL', and other hormones such as ABA, GA, and SA synergistically regulated this process. Three hormone-related genes ALDH3F1, YUCCA2, and CKX3 were the key genes contributing to the difference in shoot growth between 'CG-QA' and 'CG-DL' pear. This research provides new insight into the molecular mechanism underlying shoot shortening after grafted onto dwarf rootstocks.
Collapse
Affiliation(s)
- Zhenxu Liang
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Qinghua Wang
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Mingde Sun
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Ruirui Du
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Wanmei Jin
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Songzhong Liu
- Institute of Forestry and Pomology,Beijing Academy of Agriculture and Forestry Sciences, , Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China.
| |
Collapse
|
3
|
Wang J, Xue L, Zhang X, Hou Y, Zheng K, Fu D, Dong W. A New Function of MbIAA19 Identified to Modulate Malus Plants Dwarfing Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3097. [PMID: 37687343 PMCID: PMC10490418 DOI: 10.3390/plants12173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The primary determinants of apple (Malus) tree architecture include plant height and internode length, which are the significant criteria for evaluating apple dwarf rootstocks. Plant height and internode length are predominantly governed by phytohormones. In this study, we aimed to assess the mechanisms underlying dwarfism in a mutant of Malus baccata. M. baccata dwarf mutant (Dwf) was previously obtained through natural mutation. It has considerably reduced plant height and internode length. A comparative transcriptome analysis of wild-type (WT) and Dwf mutant was performed to identify and annotate the differentially expressed genes responsible for the Dwf phenotype using RNA-seq and GO and KEGG pathway enrichment analyses. Multiple DEGs involved in hormone signaling pathways, particularly auxin signaling pathways, were identified. Moreover, the levels of endogenous indole-3-acetic acid (IAA) were lower in Dwf mutant than in WT. The Aux/IAA transcription factor gene MbIAA19 was downregulated in Dwf mutant due to a single nucleotide sequence change in its promoter. Genetic transformation assay demonstrated strong association between MbIAA19 and the dwarf phenotype. RNAi-IAA19 lines clearly exhibited reduced plant height, internode length, and endogenous IAA levels. Our study revealed that MbIAA19 plays a role in the regulation of dwarfism and endogenous IAA levels in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.W.); (L.X.); (X.Z.); (Y.H.); (K.Z.); (D.F.)
| |
Collapse
|
4
|
Transcriptome and Gene Co-Expression Network Analysis Identifying Differentially Expressed Genes and Signal Pathways Involved in the Height Development of Banana ( Musa spp.). Int J Mol Sci 2023; 24:ijms24032628. [PMID: 36768952 PMCID: PMC9917265 DOI: 10.3390/ijms24032628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Plant height is an important and valuable agronomic trait associated with yield and resistance to abiotic and biotic stresses. Dwarfism has positive effects on plant development and field management, especially for tall monocotyledon banana (Musa spp.). However, several key genes and their regulation mechanism of controlling plant height during banana development are unclear. In the present study, the popular cultivar 'Brazilian banana' ('BX') and its dwarf mutant ('RK') were selected to identify plant height-related genes by comparing the phenotypic and transcriptomic data. Banana seedlings with 3-4 leaves were planted in the greenhouse and field. We found that the third and fourth weeks are the key period of plant height development of the selected cultivars. A total of 4563 and 10507 differentially expressed genes (DEGs) were identified in the third and fourth weeks, respectively. Twenty modules were produced by the weighted gene co-expression network analysis (WGCNA). Eight modules were positively correlated with the plant height, and twelve other modules were negatively correlated. Combining with the analysis of DEGs and WGCNA, 13 genes in the signaling pathway of gibberellic acid (GA) and 7 genes in the signaling pathway of indole acetic acid (IAA) were identified. Hub genes related to plant height development were obtained in light of the significantly different expression levels (|log2FC| ≥ 1) at the critical stages. Moreover, GA3 treatment significantly induced the transcription expressions of the selected candidate genes, suggesting that GA signaling could play a key role in plant height development of banana. It provides an important gene resource for the regulation mechanism of banana plant development and assisted breeding of ideal plant architecture.
Collapse
|
5
|
Xiao Y, Sha G, Wang D, Gao R, Qie B, Cong L, Zhai R, Yang C, Wang Z, Xu L. PbXND1 Results in a Xylem-Deficient Dwarf Phenotype through Interaction with PbTCP4 in Pear (Pyrus bretschneideri Rehd.). Int J Mol Sci 2022; 23:ijms23158699. [PMID: 35955831 PMCID: PMC9369282 DOI: 10.3390/ijms23158699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dwarfing is an important agronomic characteristic in fruit breeding. However, due to the lack of dwarf cultivars and dwarf stocks, the dwarfing mechanism is poorly understood in pears. In this research, we discovered that the dwarf hybrid seedlings of pear (Pyrus bretschneideri Rehd.), ‘Red Zaosu,’ exhibited a xylem-deficient dwarf phenotype. The expression level of PbXND1, a suppressor of xylem development, was markedly enhanced in dwarf hybrid seedlings and its overexpression in pear results in a xylem-deficient dwarf phenotype. To further dissect the mechanism of PbXND1, PbTCP4 was isolated as a PbXND1 interaction protein through the pear yeast library. Root transformation experiments showed that PbTCP4 promotes root xylem development. Dual-luciferase assays showed that PbXND1 interactions with PbTCP4 suppressed the function of PbTCP4. PbXND1 expression resulted in a small amount of PbTCP4 sequestration in the cytoplasm and thereby prevented it from activating the gene expression, as assessed by bimolecular fluorescence complementation and co-location analyses. Additionally, PbXND1 affected the DNA-binding ability of PbTCP4, as determined by utilizing an electrophoretic mobility shift assay. These results suggest that PbXND1 regulates the function of PbTCP4 principally by affecting the DNA-binding ability of PbTCP4, whereas the cytoplasmic sequestration of PbTCP4 is only a minor factor. Taken together, this study provides new theoretical support for the extreme dwarfism associated with the absence of xylem caused by PbXND1, and it has significant reference value for the breeding of dwarf varieties and dwarf rootstocks of the pear.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lingfei Xu
- Correspondence: ; Tel.: +86-029-87081023
| |
Collapse
|
6
|
Zhao X, Sun XF, Zhao LL, Huang LJ, Wang PC. Morphological, transcriptomic and metabolomic analyses of Sophora davidii mutants for plant height. BMC PLANT BIOLOGY 2022; 22:144. [PMID: 35337273 PMCID: PMC8951708 DOI: 10.1186/s12870-022-03503-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 05/28/2023]
Abstract
Sophora davidii is an important plant resource in the karst region of Southwest China, but S. davidii plant-height mutants are rarely reported. Therefore, we performed phenotypic, anatomic structural, transcriptomic and metabolomic analyses to study the mechanisms responsible for S. davidii plant-height mutants. Phenotypic and anatomical observations showed that compared to the wild type, the dwarf mutant displayed a significant decrease in plant height, while the tall mutant displayed a significant increase in plant height. The dwarf mutant cells were smaller and more densely arranged, while those of the wild type and the tall mutant were larger and loosely arranged. Transcriptomic analysis revealed that differentially expressed genes (DEGs) involved in cell wall biosynthesis, expansion, phytohormone biosynthesis, signal transduction pathways, flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched in the S. davidii plant-height mutants. Metabolomic analysis revealed 57 significantly differential metabolites screened from both the dwarf and tall mutants. A total of 8 significantly different flavonoid compounds were annotated to LIPID MAPS, and three metabolites (chlorogenic acid, kaempferol and scopoletin) were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. These results shed light on the molecular mechanisms of plant height in S. davidii mutants and provide insight for further molecular breeding programs.
Collapse
Affiliation(s)
- Xin Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiao-Fu Sun
- Weining Plateau Grassland Test Station, Weining, 553100, China
| | - Li-Li Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Li-Juan Huang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pu-Chang Wang
- Guizhou Institute of Prataculture, Guiyang, 550006, China.
| |
Collapse
|
7
|
Li Y, Zheng X, Wang C, Hou D, Li T, Li D, Ma C, Sun Z, Tian Y. Pear xyloglucan endotransglucosylase/hydrolases PcBRU1 promotes stem growth through regulating cell wall elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111026. [PMID: 34620431 DOI: 10.1016/j.plantsci.2021.111026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Brassinosteroids (BRs) play numerous important roles in plant growth and development. Previous studies reported that BRs could promote stem growth by regulating the expression of xyloglucan endotransglucosylase/hydrolases (XTHs). However, the mechanism of XTHs involved in stem growth remains unclear. In this study, PcBRU1, which belonged to the XTH family, was upregulated by exogenous BL treatment in Pyrus communis. The expression of PcBRU1 was highest in stems and lowest in leaves. Subcellular localization analysis indicated that PcBRU1 was located in the plasma membrane. Furthermore, overexpressing PcBRU1 in tobaccos promoted the plant height and internode length. Electron microscopy and anatomical structure analysis showed that the cell wall was significantly thinner and the cells were slenderer in transgenic tobacco lines overexpressing PcBRU1 than in wild-type tobaccos. PcBRU1 promoted stem growth as it loosened the cell wall, leading to the change in cell morphology. In addition, overexpressing PcBRU1 altered the root development and leaf shape of transgenic tobaccos. Taken together, the results could provide a theoretical basis for the XTH family in regulating cell-wall elongation and stem growth.
Collapse
Affiliation(s)
- Yuchao Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Dongliang Hou
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Tingting Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Dingli Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Zhijuan Sun
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China; College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China.
| |
Collapse
|
8
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Lin T, Zhou R, Bi B, Song L, Chai M, Wang Q, Song G. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant. Sci Rep 2020; 10:18913. [PMID: 33144613 PMCID: PMC7609746 DOI: 10.1038/s41598-020-75421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.
Collapse
Affiliation(s)
- Tianyi Lin
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ren Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Bi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangyuan Song
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mingliang Chai
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Guoqing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Characterization of the Auxin Efflux Transporter PIN Proteins in Pear. PLANTS 2020; 9:plants9030349. [PMID: 32164258 PMCID: PMC7154836 DOI: 10.3390/plants9030349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
PIN-FORMED (PIN) encodes a key auxin polar transport family that plays a crucial role in the outward transport of auxin and several growth and development processes, including dwarfing trees. We identified a dwarfing pear rootstock 'OHF51' (Pyrus communis), which limits the growth vigor of the 'Xueqing' (Pyrus bretschneideri × Pyrus pyrifolia) scion, and isolated 14 putative PbPINs from the pear Pyrus bretschneideri. The phylogenic relationships, structure, promoter regions, and expression patterns were analyzed. PbPINs were classified into two main groups based on the protein domain structure and categorized into three major groups using the neighbor-joining algorithm. Promoter analysis demonstrated that PbPINs might be closely related to plant growth and development. Through quantitative real-time PCR (qRT-PCR) analysis, we found that the expression patterns of 14 PbPINs varied upon exposure to different organs in dwarfing and vigorous stocks, 'OHF51' and 'QN101' (Pyrus betulifolia), indicating that they might play varying roles in different tissues and participated in the regulation of growth vigor. These results provide fundamental insights into the characteristics and evolution of the PINs family, as well as the possible relationship between dwarfing ability and auxin polar transport.
Collapse
|