1
|
Chiang W, Stout A, Yanchik-Slade F, Li H, Terrando N, Nilsson BL, Gelbard HA, Krauss TD. Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Blood-Brain Barrier Damage Relevant to NeuroCOVID Brain Inflammation. ACS APPLIED NANO MATERIALS 2023; 6:15094-15107. [PMID: 37649833 PMCID: PMC10463222 DOI: 10.1021/acsanm.3c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Despite limited evidence for infection of SARS-CoV-2 in the central nervous system, cognitive impairment is a common complication reported in "recovered" COVID-19 patients. Identification of the origins of these neurological impairments is essential to inform therapeutic designs against them. However, such studies are limited, in part, by the current status of high-fidelity probes to visually investigate the effects of SARS-CoV-2 on the system of blood vessels and nerve cells in the brain, called the neurovascular unit. Here, we report that nanocrystal quantum dot micelles decorated with spike protein (COVID-QDs) are able to interrogate neurological damage due to SARS-CoV-2. In a transwell co-culture model of the neurovascular unit, exposure of brain endothelial cells to COVID-QDs elicited an inflammatory response in neurons and astrocytes without direct interaction with the COVID-QDs. These results provide compelling evidence of an inflammatory response without direct exposure to SARS-CoV-2-like nanoparticles. Additionally, we found that pretreatment with a neuro-protective molecule prevented endothelial cell damage resulting in substantial neurological protection. These results will accelerate studies into the mechanisms by which SARS-CoV-2 mediates neurologic dysfunction.
Collapse
Affiliation(s)
- Wesley Chiang
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Angela Stout
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Francine Yanchik-Slade
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Herman Li
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Niccolò Terrando
- Department
of Anesthesiology, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Bradley L. Nilsson
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Harris A. Gelbard
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Todd D. Krauss
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Andreata F, Clément M, Benson RA, Hadchouel J, Procopio E, Even G, Vorbe J, Benadda S, Ollivier V, Ho-Tin-Noe B, Le Borgne M, Maffia P, Nicoletti A, Caligiuri G. CD31 signaling promotes the detachment at the uropod of extravasating neutrophils allowing their migration to sites of inflammation. eLife 2023; 12:e84752. [PMID: 37549051 PMCID: PMC10431918 DOI: 10.7554/elife.84752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed β2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.
Collapse
Affiliation(s)
- Francesco Andreata
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Juliette Hadchouel
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center (PARCC)ParisFrance
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Julie Vorbe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Samira Benadda
- Cell and Tissue Imaging Platform, INSERM, CNRS, ERL8252, Centre de Recherche sur l’Inflammation (CRI)ParisFrance
| | - Véronique Ollivier
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Benoit Ho-Tin-Noe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico IINaplesItaly
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS)ParisFrance
- Department of Cardiology and of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Nord Val-de-Seine, Site BichatParisFrance
| |
Collapse
|
3
|
Sénémaud JN, Skarbek C, Vigne J, Rouzet F, Castier Y, Caligiuri G. Molecular Imaging of Experimental Abdominal Aortic Aneurysms Targeting Vascular Homeostasis Disruption via CD31 Shedding. Eur J Vasc Endovasc Surg 2022; 64:735-736. [PMID: 36209963 DOI: 10.1016/j.ejvs.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Jean N Sénémaud
- Department of Vascular Surgery, Bichat University Hospital, Paris, France; Université de Paris, Paris, France; Laboratory for Vascular Translational Science, INSERM U1148, Paris, France.
| | - Charles Skarbek
- Laboratory for Vascular Translational Science, INSERM U1148, Paris, France
| | - Jonathan Vigne
- Université de Paris, Paris, France; Laboratory for Vascular Translational Science, INSERM U1148, Paris, France; Nuclear Medicine Department, Bichat University Hospital, Paris, France
| | - Francois Rouzet
- Université de Paris, Paris, France; Nuclear Medicine Department, Bichat University Hospital, Paris, France
| | - Yves Castier
- Department of Vascular Surgery, Bichat University Hospital, Paris, France; Université de Paris, Paris, France
| | - Giuseppina Caligiuri
- Université de Paris, Paris, France; Laboratory for Vascular Translational Science, INSERM U1148, Paris, France
| |
Collapse
|
4
|
Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31. Sci Rep 2022; 12:17628. [PMID: 36271122 PMCID: PMC9587244 DOI: 10.1038/s41598-022-21070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO2/FiO2) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a "peace-maker" at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO2/FiO2 and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort.
Collapse
|
5
|
Xiao C, Qin Z, Xiao J, Li Q, He T, Li S, Shen F. Association between basal platelet count and all-cause mortality in critically ill patients with acute respiratory failure: a secondary analysis from the eICU collaborative research database. Am J Transl Res 2022; 14:1685-1694. [PMID: 35422956 PMCID: PMC8991150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence regarding the correlation between platelet count and all-cause mortality in critically ill patients with acute respiratory failure (ARF) is limited. Therefore, the aim of the study was to evaluate whether platelet count was associated with all-cause mortality in critical patients with ARF by using the electronic intensive care unit (eICU) Collaborative Research Database (eICU-CRD). METHODS In this retrospective multicenter cohort study, the data of 26961 patients with ARF hospitalized in ICUs between 2014 and 2015 were collected. The independent variable was log2 basal platelet count, and the dependent variables were all-cause in-hospital and ICU mortality. Covariates including demographic data, Acute Physiology and Chronic Health Evaluation (APACHE) IV score, supportive treatment, and comorbidities were collected. RESULTS In the fully adjusted model, log2 basal platelet count was negatively associated with all-cause mortality both in hospital [RR: 0.87, 95% CI: 0.84-0.91] and in ICU [RR: 0.87, 95% CI: 0.83-0.92]. A non-linear relationship between log2 basal platelet count and all-cause in-hospital and ICU mortality was identified by the nonlinearity test. The inflection points we got were 6.83 and 6.86 respectively (after inverse log2 logarithmic conversion, the platelet counts were 114×109/L and 116×109/L, respectively). On the right side of the inflection point, however, no association was observed between blood platelets and all-cause in-hospital (RR: 0.96, 95% CI: 0.88-1.03) and ICU mortality (RR: 0.97, 95% CI: 0.91-1.04). CONCLUSIONS For patients with ARF in ICU, platelet count was negatively associated with all-cause in-hospital and ICU mortality when the platelet count was less than 114×109/L and 116×109/L respectively, but when the platelet count was higher, we failed to observe a correlation between them. The safe ranges of platelet count for hospital stay and ICU stay were 78×109/L-145×109/L and 89×109/L-147×109/L respectively.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Zuoan Qin
- Department of Cardiology, The First People’s Hospital of Changde CityChangde 415003, Hunan, China
| | - Jingjing Xiao
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Qing Li
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Tianhui He
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Shuwen Li
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Feng Shen
- Department of Intensive Care Unit, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| |
Collapse
|
6
|
Prigent K, Vigne J. Advances in Radiopharmaceutical Sciences for Vascular Inflammation Imaging: Focus on Clinical Applications. Molecules 2021; 26:molecules26237111. [PMID: 34885690 PMCID: PMC8659223 DOI: 10.3390/molecules26237111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Biomedical imaging technologies offer identification of several anatomic and molecular features of disease pathogenesis. Molecular imaging techniques to assess cellular processes in vivo have been useful in advancing our understanding of several vascular inflammatory diseases. For the non-invasive molecular imaging of vascular inflammation, nuclear medicine constitutes one of the best imaging modalities, thanks to its high sensitivity for the detection of probes in tissues. 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) is currently the most widely used radiopharmaceutical for molecular imaging of vascular inflammatory diseases such as atherosclerosis and large-vessel vasculitis. The combination of [18F]FDG and positron emission tomography (PET) imaging has become a powerful tool to identify and monitor non-invasively inflammatory activities over time but suffers from several limitations including a lack of specificity and avid background in different localizations. The use of novel radiotracers may help to better understand the underlying pathophysiological processes and overcome some limitations of [18F]FDG PET for the imaging of vascular inflammation. This review examines how [18F]FDG PET has given us deeper insight into the role of inflammation in different vascular pathologies progression and discusses perspectives for alternative radiopharmaceuticals that could provide a more specific and simple identification of pathologies where vascular inflammation is implicated. Use of these novel PET tracers could lead to a better understanding of underlying disease mechanisms and help inform the identification and stratification of patients for newly emerging immune-modulatory therapies. Future research is needed to realize the true clinical translational value of PET imaging in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Kevin Prigent
- CHU de Caen Normandie, Department of Nuclear Medicine, Normandie Université, UNICAEN, 14000 Caen, France;
| | - Jonathan Vigne
- CHU de Caen Normandie, Department of Nuclear Medicine, Normandie Université, UNICAEN, 14000 Caen, France;
- CHU de Caen Normandie, Department of Pharmacy, Normandie Université, UNICAEN, 14000 Caen, France
- UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, 14000 Caen, France
- Correspondence:
| |
Collapse
|
7
|
De Novo Valve Tissue Morphology Following Bioscaffold Mitral Valve Replacement in a Juvenile Non-Human Primate Model. Bioengineering (Basel) 2021; 8:bioengineering8070100. [PMID: 34356207 PMCID: PMC8301182 DOI: 10.3390/bioengineering8070100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/04/2022] Open
Abstract
The utility of implanting a bioscaffold mitral valve consisting of porcine small intestinal submucosa (PSIS) in a juvenile baboon model (12 to 14 months old at the time of implant; n = 3) to assess their in vivo tissue remodeling responses was investigated. Our findings demonstrated that the PSIS mitral valve exhibited the robust presence of de novo extracellular matrix (ECM) at all explantation time points (at 3-, 11-, and 20-months). Apart from a significantly lower level of proteoglycans in the implanted valve’s annulus region (p < 0.05) at 3 months compared to the 11- and 20-month explants, there were no other significant differences (p > 0.05) found between any of the other principal valve ECM components (collagen and elastin) at the leaflet, annulus, or chordae tendinea locations, across these time points. In particular, neochordae tissue had formed, which seamlessly integrated with the native papillary muscles. However, additional processing will be required to trigger accelerated, uniform and complete valve ECM formation in the recipient. Regardless of the specific processing done to the bioscaffold valve, in this proof-of-concept study, we estimate that a 3-month window following bioscaffold valve replacement is the timeline in which complete regeneration of the valve and integration with the host needs to occur.
Collapse
|