1
|
Kim D, Park P, Li X, Wong-Campos JD, Tian H, Moult EM, Grimm JB, Lavis LD, Cohen AE. EPSILON: a method for pulse-chase labeling to probe synaptic AMPAR exocytosis during memory formation. Nat Neurosci 2025:10.1038/s41593-025-01922-5. [PMID: 40164742 DOI: 10.1038/s41593-025-01922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms of learning and memory. Here we developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) exocytosis in vivo by sequential pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach yields synaptic-resolution maps of AMPAR exocytosis, a proxy for synaptic potentiation, in genetically targeted neurons during memory formation. In mice undergoing contextual fear conditioning, we investigated the relationship between synapse-level AMPAR exocytosis in CA1 pyramidal neurons and cell-level expression of the immediate early gene product cFos, a frequently used marker of engram neurons. We observed a strong correlation between AMPAR exocytosis and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Xiuyuan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
3
|
Dey H, Perez-Hurtado M, Heidelberger R. Syntaxin 3B: A SNARE Protein Required for Vision. Int J Mol Sci 2024; 25:10665. [PMID: 39408994 PMCID: PMC11476516 DOI: 10.3390/ijms251910665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Syntaxin 3 is a member of a large protein family of syntaxin proteins that mediate fusion between vesicles and their target membranes. Mutations in the ubiquitously expressed syntaxin 3A splice form give rise to a serious gastrointestinal disorder in humans called microvillus inclusion disorder, while mutations that additionally involve syntaxin 3B, a splice form that is expressed primarily in retinal photoreceptors and bipolar cells, additionally give rise to an early onset severe retinal dystrophy. In this review, we discuss recent studies elucidating the roles of syntaxin 3B and the regulation of syntaxin 3B functionality in membrane fusion and neurotransmitter release in the vertebrate retina.
Collapse
Affiliation(s)
| | | | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.D.)
| |
Collapse
|
4
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
5
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
6
|
Giloteaux L, Glass KA, Germain A, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female ME/CFS cases and sedentary controls in response to maximal exercise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555033. [PMID: 37693468 PMCID: PMC10491093 DOI: 10.1101/2023.08.28.555033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue, and reduces risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signaling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 minutes, and 24 hours after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients vs. controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system, and brain signaling.
Collapse
|
7
|
Huang M, Bin NR, Rai J, Ma K, Chow CH, Eide S, Harada H, Xiao J, Feng D, Sun HS, Feng ZP, Gaisano HY, Pessin JE, Monnier PP, Okamoto K, Zhang L, Sugita S. Neuronal SNAP-23 is critical for synaptic plasticity and spatial memory independently of NMDA receptor regulation. iScience 2023; 26:106664. [PMID: 37168570 PMCID: PMC10165271 DOI: 10.1016/j.isci.2023.106664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
SNARE-mediated membrane fusion plays a crucial role in presynaptic vesicle exocytosis and also in postsynaptic receptor delivery. The latter is considered particularly important for synaptic plasticity and learning and memory, yet the identity of the key SNARE proteins remains elusive. Here, we investigate the role of neuronal synaptosomal-associated protein-23 (SNAP-23) by analyzing pyramidal-neuron specific SNAP-23 conditional knockout (cKO) mice. Electrophysiological analysis of SNAP-23 deficient neurons using acute hippocampal slices showed normal basal neurotransmission in CA3-CA1 synapses with unchanged AMPA and NMDA currents. Nevertheless, we found theta-burst stimulation-induced long-term potentiation (LTP) was vastly diminished in SNAP-23 cKO slices. Moreover, unlike syntaxin-4 cKO mice where both basal neurotransmission and LTP decrease manifested changes in a broad set of behavioral tasks, deficits of SNAP-23 cKO are more limited to spatial memory. Our data reveal that neuronal SNAP-23 is selectively crucial for synaptic plasticity and spatial memory without affecting basal glutamate receptor function.
Collapse
Affiliation(s)
- Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Na-Ryum Bin
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jayant Rai
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G1X5, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ke Ma
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jianbing Xiao
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anatomy, Harbin Medical University, Harbin 150081, China
| | - Daorong Feng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Anatomy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Herbert Y. Gaisano
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Philippe P. Monnier
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Donald K. Johnson Eye Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G1X5, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Li J, Jian Y, Liu R, Zhao X, Mao J, Wei W, Jiang C, Zhang L, Wang Y, Zhou P. Choline and Fish Oil Can Improve Memory of Mice through Increasing Brain DHA Level. Foods 2023; 12:foods12091799. [PMID: 37174337 PMCID: PMC10178732 DOI: 10.3390/foods12091799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Docosahexaenoic acid (DHA) is highly enriched in the brain, and is essential for normal brain development and function. However, evidence suggests that currently used supplements, such as fish oil, do not significantly increase brain DHA levels. Therefore, this study aimed to investigate whether combined fish oil and choline supplementation could affect the type and enrich the content of DHA in the brain. The results revealed that the combined intake of fish oil and choline upregulated the expression of key transporters and receptors, including MFSD2A, FATP1, and FABP5, which increased the uptake of DHA in the brain. Additionally, this supplementation improved the synthesis and release of acetylcholine in the brain, which, in turn, enhanced the learning and memory abilities of mice. These findings suggest that the combined intake of fish oil and choline improves the bioavailability of DHA in the brain.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Yaqiong Jian
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Ruonan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Xianfeng Zhao
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai 200135, China
| | - Jiangyi Mao
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai 200135, China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Chenyu Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Yi Wang
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai 200135, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| |
Collapse
|
9
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
10
|
Choquet D, Opazo P. The role of AMPAR lateral diffusion in memory. Semin Cell Dev Biol 2022; 125:76-83. [PMID: 35123863 DOI: 10.1016/j.semcdb.2022.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
The accumulation of AMPARs to synapses is a fundamental step in Long-term potentiation (LTP) of synaptic transmission, a well-established cellular correlate of learning and memory. The discovery of a sizeable and highly mobile population of extrasynaptic AMPARs - randomly scanning the synaptic surface under basal conditions - provided a conceptual framework for a simplified model: LTP can be induced by the capture, and hence accumulation, of laterally diffusing extrasynaptic AMPARs. Here, we review the evidence supporting a rate-limiting role of AMPAR lateral diffusion in LTP and as consequence, in learning and memory. We propose that there are "multiple solutions" for achieving the diffusional trapping of AMPAR during LTP, mainly mediated by the interaction between interchangeable AMPAR auxiliary subunits and cell-adhesion molecules containing PDZ-binding domains and synaptic scaffolds containing PDZ-domains. We believe that this molecular degeneracy in the diffusional trapping of AMPAR during LTP serve to ensure the robustness of this crucial step in the making of memories. All in all, the role of AMPAR lateral diffusion in LTP is not only a conceptual leap in our understanding of memory, but it might also hold the keys for the development of therapeutics against disorders associated with memory deficits such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Choquet
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, Bordeaux, France.
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Blockade of adenosine A 2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice. Exp Neurol 2021; 350:113929. [PMID: 34813840 DOI: 10.1016/j.expneurol.2021.113929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is widely known for its multiple systems damage, especially neurocognitive deficits in children. Since their discovery, adenosine A2A receptors (A2ARs) have been considered as key elements in signaling pathways mediating neurodegenerative diseases such as Huntington's and Alzheimer's, as well as cognitive function regulation. Herein, we investigated A2AR role in cognitive impairment induced by chronic intermittent hypoxia (CIH). Mice were exposed to CIH 7 h every day for 4 weeks, and intraperitoneally injected with A2AR agonist CGS21680 or A2AR antagonist SCH58261 half an hour before IH exposure daily. The 8-arm radial arm maze was utilized to assess spatial memory after CIH exposures.To validate findings using pharmacology, the impact of intermittent hypoxia was investigated in A2AR knockout mice. CIH-induced memory dysfunction was manifested by increased error rates in the radial arm maze test. The behavioral changes were associated with hippocampal pathology, neuronal apoptosis, and synaptic plasticity impairment. The stimulation of adenosine A2AR exacerbated memory impairment with more serious neuropathological damage, attenuated long-term potentiation (LTP), syntaxin down-regulation, and increased BDNF protein. Moreover, apoptosis-promoting protein cleaved caspase-3 was upregulated while anti-apoptotic protein Bcl-2 was downregulated. Consistent with these findings, A2AR inhibition with SCH58261 and A2AR deletion exhibited the opposite result. Overall, these findings suggest that A2AR plays a critical role in CIH-induced impairment of learning and memory by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity. Blockade of adenosine A2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice.
Collapse
|
12
|
Janecke AR, Liu X, Adam R, Punuru S, Viestenz A, Strauß V, Laass M, Sanchez E, Adachi R, Schatz MP, Saboo US, Mittal N, Rohrschneider K, Escher J, Ganesh A, Al Zuhaibi S, Al Murshedi F, AlSaleem B, Alfadhel M, Al Sinani S, Alkuraya FS, Huber LA, Müller T, Heidelberger R, Janz R. Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects. Hum Genet 2021; 140:1143-1156. [PMID: 33974130 PMCID: PMC8263458 DOI: 10.1007/s00439-021-02284-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023]
Abstract
Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rüdiger Adam
- University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sumanth Punuru
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arne Viestenz
- Department of Ophthalmology, University Medical Center Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Valeria Strauß
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Halle, Halle, Germany
| | - Martin Laass
- Klinik und Poliklinik f. Kinder- u. Jugendmedizin, University of Dresden, Dresden, Germany
| | - Elizabeth Sanchez
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martha P Schatz
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ujwala S Saboo
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Naveen Mittal
- Department of Department of Pediatrics, Division of Pediatric Gastroenterology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Johanna Escher
- Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anuradha Ganesh
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Sana Al Zuhaibi
- Department of Ophthalmology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Badr AlSaleem
- King Fahad Medical City, Children's Specialized Hospital, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics Division and Medical Genomic Research Lab, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Siham Al Sinani
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA.
| | - Roger Janz
- Department of Neurobiology and Anatomy, MSB 7.046, McGovern Medical School at the University of Texas HSC (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|