1
|
Magliacano A, Scarano G, Fasano C, Mannini A, Liuzzi P, Finocchi A, Estraneo A. Spontaneous eye blinking as a diagnostic and prognostic marker in disorders of consciousness: Protocol of an international multicentre longitudinal study. NeuroRehabilitation 2024:NRE240127. [PMID: 39422977 DOI: 10.3233/nre-240127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Diagnostic and prognostic decision-making in patients with Disorders of Consciousness (DoC) is challenging. It has been suggested that spontaneous eye blink rate is an index of patients' level of consciousness easy to detect in clinical practice. Further blinking features (i.e., amplitude, duration, variability in intervals between blinks) may change as a function of cognitive load, but have not been investigated in patients with DoC. OBJECTIVE This multicentre, longitudinal study aims at exploring the diagnostic and prognostic value of spontaneous eye blinking features in DoC. METHODS Eight European medical institutions will enrol consecutively admitted adult patients with DoC. Within two weeks from study entry demographic, anamnestic and clinical data will be collected. Moreover, patients will undergo two 20-minute EEG-EOG recordings at rest, to collect blinking features and EEG activity. A clinical follow-up will be performed after 6 months. A group of healthy individuals will be enrolled for reference. RESULTS Possible differences in blink features between patients and the reference group, differences across diagnostic sub-groups, and correlations between blinking features and clinical outcome will be investigated. CONCLUSION The results of this study might help clinicians to reduce misdiagnosis rate in DoC and provide useful information for prognostication and care pathway plan.
Collapse
Affiliation(s)
| | - Giovanni Scarano
- Polo Specialistico Riabilitativo - Fondazione Don Carlo Gnocchi ONLUS, Sant'Angelo dei Lombardi, Avellino, Italy
| | - Cinzia Fasano
- Polo Specialistico Riabilitativo - Fondazione Don Carlo Gnocchi ONLUS, Sant'Angelo dei Lombardi, Avellino, Italy
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | | | - Alice Finocchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | - Anna Estraneo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
2
|
Gunduz A, Aktan Suzgun M, E Kızıltan M. Modulation of the somatosensory blink reflex under fear. Neuroscience 2024; 554:11-15. [PMID: 39002753 DOI: 10.1016/j.neuroscience.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE This study evaluated the isolated and combined effects of fear and PPS paradigms on SBR. METHOD The prospective study was conducted with healthy participants. After stimulation of the right median nerve at the wrist, bilateral recordings were randomized under the following conditions: First experiment (with the right hand on the chair armrest): i. baseline recordings, ii. while watching fearful facial expressions from the Karolinska Emotional Faces battery (fear), iii. post-watching (post-fear), iv. while watching neutral facial expressions from the same battery (neutral), v. Immediately after viewing (post-neutral). Second experiment (right hand 2 cm away from the right eye, PPS): i. reference condition (PPS), ii. while watching fearful facial expressions (PPS-fear), iii. while watching neutral facial expressions (PPS-neutral). In each condition, SBR latency, area, duration, and amplitudes were measured and compared between conditions. RESULTS We included 16 participants. SBR could be recorded in 11 (mean age:30.7 ± 5.2, F/M:5/6). First experiment: SBR amplitude was significantly reduced in fear condition (p = 0.008), and SBR area was reduced considerably in fear and post-fear conditions (p = 0.004) compared to the baseline. Second experiment: The SBR area was higher in the PPS (p = 0.009) compared to the baseline and even higher in the fearPPS compared to the PPS (p = 0.038). In neutral or PPS-neutral conditions, the area of the SBR did not change significantly. CONCLUSION Fear suppressed SBR, but fear increased SBR when a threat stimulus was present. The findings were unrelated to habituation or attention, indicating cortical-amygdala-bulbar connections.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Neurology, Department of Clinical Neurophysiology, Istanbul, Turkey.
| | - Merve Aktan Suzgun
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Neurology, Department of Clinical Neurophysiology, Istanbul, Turkey
| | - Meral E Kızıltan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Neurology, Department of Clinical Neurophysiology, Istanbul, Turkey
| |
Collapse
|
3
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Heine L, Corneyllie A, Gobert F, Luauté J, Lavandier M, Perrin F. Virtually spatialized sounds enhance auditory processing in healthy participants and patients with a disorder of consciousness. Sci Rep 2021; 11:13702. [PMID: 34211035 PMCID: PMC8249625 DOI: 10.1038/s41598-021-93151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Neuroscientific and clinical studies on auditory perception often use headphones to limit sound interference. In these conditions, sounds are perceived as internalized because they lack the sound-attributes that normally occur with a sound produced from a point in space around the listener. Without the spatial attention mechanisms that occur with localized sounds, auditory functional assessments could thus be underestimated. We hypothesize that adding virtually externalization and localization cues to sounds through headphones enhance sound discrimination in both healthy participants and patients with a disorder of consciousness (DOC). Hd-EEG was analyzed in 14 healthy participants and 18 patients while they listened to self-relevant and irrelevant stimuli in two forms: diotic (classic sound presentation with an "internalized" feeling) and convolved with a binaural room impulse response (to create an "externalized" feeling). Convolution enhanced the brains' discriminative response as well as the processing of irrelevant sounds itself, in both healthy participants and DOC patients. For the healthy participants, these effects could be associated with enhanced activation of both the dorsal (where/how) and ventral (what) auditory streams, suggesting that spatial attributes support speech discrimination. Thus, virtually spatialized sounds might "call attention to the outside world" and improve the sensitivity of assessment of brain function in DOC patients.
Collapse
Affiliation(s)
- Lizette Heine
- Audition Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, UCBL, INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Bâtiment 462, Neurocampus Michel Jouvet, 95 Boulevard Pinel, Bron Cedex, 69675, Lyon, France
- Laboratoire de Tribologie et Dynamique des Systèmes UMR 5513, ENTPE, University of Lyon, Rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France
| | - Alexandra Corneyllie
- Audition Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, UCBL, INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Bâtiment 462, Neurocampus Michel Jouvet, 95 Boulevard Pinel, Bron Cedex, 69675, Lyon, France
| | - Florent Gobert
- Audition Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, UCBL, INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Bâtiment 462, Neurocampus Michel Jouvet, 95 Boulevard Pinel, Bron Cedex, 69675, Lyon, France
- Trajectoires Team, Lyon Neuroscience Research Center, UCBL, INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Lyon, France
| | - Jacques Luauté
- Service de Médecine Physique et de Réadaptation, Rééducation Neurologique, Hôpital Henry-Gabrielle, CHU de Lyon, 69230, Saint-Genis-Laval, France
- Trajectoires Team, Lyon Neuroscience Research Center, UCBL, INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Lyon, France
| | - Mathieu Lavandier
- Laboratoire de Tribologie et Dynamique des Systèmes UMR 5513, ENTPE, University of Lyon, Rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France
| | - Fabien Perrin
- Audition Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, UCBL, INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Bâtiment 462, Neurocampus Michel Jouvet, 95 Boulevard Pinel, Bron Cedex, 69675, Lyon, France.
| |
Collapse
|