1
|
Chhikara K, Suresh S, Morrison S, Hartley D, Evans K, Wille ML, Teixeira MBF, Hughes B, Haskell N, Beatson A, Chamorro-Koc M, Little JP. Does Scanner Choice Matter for the Design of Foot Orthosis? SENSORS (BASEL, SWITZERLAND) 2025; 25:869. [PMID: 39943509 PMCID: PMC11820986 DOI: 10.3390/s25030869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
A variety of 3D volumetric scanners and smart-device applications are currently being used in podiatry for recording virtual foot data. The accuracy and reliability of these devices vary, resulting in a large variation in the quality of foot scans used for orthotic design. While it is widely believed that a higher quality scanner yields a better scan and thus is expected to produce a more accurate orthotic design, the direct impact of scanning quality on orthotic design has not yet been tested. Therefore, in this study, three commonly used industrial 3D scanners with varying output qualities were used to obtain foot scans of three participants in two weight-bearing conditions. A total of 54 foot scans were obtained, out of which 18 were used to design orthotic insoles using commercial software (FitFoot360). We found variation in the quality of foot scans produced by the different scanners (61.75 ± 2.23% similarity of the foot scans showing a deviation of less than ±1 mm). However, there were no significant differences in the designed foot orthoses within the same weight-bearing condition (83.59 ± 1.97% similarity of the orthotic designs showing a deviation of less than ±1 mm). The medial arch height and heel width differed significantly only when the weight-bearing condition was changed. The findings from this study suggest that the industrial design and production of an orthotic insole using current methods does not depend on the scanning quality of the scanner used but is dependent on the extent of weight bearing.
Collapse
Affiliation(s)
- Komal Chhikara
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.S.); (M.-L.W.); (J.P.L.)
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sinduja Suresh
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.S.); (M.-L.W.); (J.P.L.)
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Biomechanics & Spine Research Group at the Centre for Children’s Health Research, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott Morrison
- iOrthotics, Brisbane, QLD 4030, Australia; (S.M.); (D.H.)
| | - Dean Hartley
- iOrthotics, Brisbane, QLD 4030, Australia; (S.M.); (D.H.)
- Healthia Limited, Brisbane, QLD 4006, Australia;
| | - Kerrie Evans
- Healthia Limited, Brisbane, QLD 4006, Australia;
- Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marie-Luise Wille
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.S.); (M.-L.W.); (J.P.L.)
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Müge Belek Fialho Teixeira
- School of Architecture and Built Environment, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Bridget Hughes
- School of Education, Faculty of Creative Industries, Education, and Social Justice, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Natalie Haskell
- School of Design, Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology, Brisbane, QLD 4000, Australia; (N.H.); (M.C.-K.)
- QUT Design Lab, Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Amanda Beatson
- School of Architecture, Industrial Design and Planning, Griffith University, 1 Parklands Dr, Southport, QLD 4215, Australia
| | - Marianella Chamorro-Koc
- School of Design, Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology, Brisbane, QLD 4000, Australia; (N.H.); (M.C.-K.)
- QUT Business School, Centre for Decent Work and Industry (CDWI), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Judith Paige Little
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; (S.S.); (M.-L.W.); (J.P.L.)
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Biomechanics & Spine Research Group at the Centre for Children’s Health Research, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Sharma A, Bharti PS. Transforming orthodontic retention: potential of 3D printing and biocompatible material characteristics. J Med Eng Technol 2025; 49:8-33. [PMID: 39976311 DOI: 10.1080/03091902.2025.2466198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
This review article delves into the cutting-edge realm of 3D printing and its impact on the fabrication of customised orthodontic retainers, which is an essential utility in the prevention of relapse post orthodontic treatment. This review evaluates the use of biocompatible materials and provides insight into future perspectives and improvements in this field. It highlights the potential of data collecting method and 3D printing to improve orthodontic retainers' fabrication and emphasises the importance of using biocompatible materials for patient safety and efficacy. It also explains cytotoxic qualities of retainer fabrication materials, which are vital for safeguarding the oral health of the patient. The evaluation procedure enables the early diagnosis and correction of any potential difficulties, such as maladjustment or inappropriate fit, allowing for a more effective treatment. It illustrates the breakthroughs and innovations in the field of orthodontics, the advantages of 3D printing over conventional methods, as well as the advantages and disadvantages of various fabrication method. Incorporating 3D printing and review into the production of orthodontic retainers enhances the overall effectiveness and efficiency of patient treatment.
Collapse
Affiliation(s)
- Anmol Sharma
- USIC&T, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | | |
Collapse
|
3
|
Spears SDJ, Lester T, Torii R, Kalaskar DM. Comparative evaluation of Artec Leo hand-held scanner and iPad Pro for 3D scanning of cervical and craniofacial data: assessing precision, accuracy, and user experience. 3D Print Med 2024; 10:39. [PMID: 39585546 PMCID: PMC11587624 DOI: 10.1186/s41205-024-00245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
AIM This study compares the precision, accuracy, and user experience of 3D body surface scanning of human subjects using the Artec Leo hand-held scanner and the iPad Pro as 3D scanning devices for capturing cervical and craniofacial data. The investigation includes assessing methods for correcting 'dropped head syndrome' during scanning, to demonstrate the ability of the scanner to be used to reconstruct body surface of patients. METHODS Eighteen volunteers with no prior history of neck weakness were scanned three times in three different positions, using the two different devices. Surface area, scanning time, and participant comfort scores were evaluated for both devices. Precision and accuracy were assessed using Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and Intra-Class Correlation Coefficients (ICC). RESULTS Surface area comparisons revealed no significant differences between devices and positions. Scanning times showed no significant difference between devices or positions. Comfort scores varied across positions. MAD analysis identified chin to chest measurements as having the highest variance, especially in scanning position 3. However, no statistical differences were found. MAPE results confirmed accuracy below 5% error for both devices. ICC scores indicated good reliability for both measurement methods, particularly for chin to chest measurements in positions 1 and 3. CONCLUSION The iPad Pro using the Qlone app demonstrates a viable alternative to the Artec Leo, particularly for capturing head and neck surface area within a clinical setting. The scanning resolution, with an error margin within ±5%, is consistent with clinically accepted standards for orthosis design, where padding and final fit adjustments allow for bespoke devices that accommodate patient comfort. This study highlights the comparative performance of the iPad, as well as suggests two methods which can be used within clinics to correct head drop for scanning.
Collapse
Affiliation(s)
- Samuel D J Spears
- Division of Surgery and Interventional Sciences, University College London, London, NW3 2PF, United Kingdom.
| | - Thomas Lester
- Division of Surgery and Interventional Sciences, University College London, London, NW3 2PF, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College of London, London, United Kingdom
| | - Deepak M Kalaskar
- Division of Surgery and Interventional Sciences, University College London, London, NW3 2PF, United Kingdom.
| |
Collapse
|
4
|
Guy A, Coulombe M, Labelle H, Barchi S, Aubin CÉ. Automated design of nighttime braces for adolescent idiopathic scoliosis with global shape optimization using a patient-specific finite element model. Sci Rep 2024; 14:3300. [PMID: 38332053 PMCID: PMC10853218 DOI: 10.1038/s41598-024-53586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Adolescent idiopathic scoliosis is a complex three-dimensional deformity of the spine, the moderate forms of which require treatment with an orthopedic brace. Existing brace design approaches rely mainly on empirical manual processes, vary considerably depending on the training and expertise of the orthotist, and do not always guarantee biomechanical effectiveness. To address these issues, we propose a new automated design method for creating bespoke nighttime braces requiring virtually no user input in the process. From standard biplanar radiographs and a surface topography torso scan, a personalized finite element model of the patient is created to simulate bracing and the resulting spine growth over the treatment period. Then, the topography of an automatically generated brace is modified and simulated over hundreds of iterations by a clinically driven optimization algorithm aiming to improve brace immediate and long-term effectiveness while respecting safety thresholds. This method was clinically tested on 17 patients prospectively recruited. The optimized braces showed a highly effective immediate correction of the thoracic and lumbar curves (70% and 90% respectively), with no modifications needed to fit the braces onto the patients. In addition, the simulated lumbar lordosis and thoracic apical rotation were improved by 5° ± 3° and 2° ± 3° respectively. Our approach distinguishes from traditional brace design as it relies solely on biomechanically validated models of the patient's digital twin and a design strategy that is entirely abstracted from empirical knowledge. It provides clinicians with an efficient way to create effective braces without relying on lengthy manual processes and variable orthotist expertise to ensure a proper correction of scoliosis.
Collapse
Affiliation(s)
- Aymeric Guy
- Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Maxence Coulombe
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Université de Montréal, Montreal, QC, Canada
| | - Hubert Labelle
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Université de Montréal, Montreal, QC, Canada
| | - Soraya Barchi
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Carl-Éric Aubin
- Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada.
- Sainte-Justine University Hospital Center, Montreal, QC, Canada.
- Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
5
|
Ji Z, Brion DAJ, Samson KDG, Pattinson SW. Facile method for 3D printing conformally onto uneven surfaces and its application to face masks. Sci Rep 2023; 13:21659. [PMID: 38066200 PMCID: PMC10709438 DOI: 10.1038/s41598-023-48547-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
Conventional additive manufacturing processes, where parts are built through layer-wise deposition of material on a horizontal plane, can be limiting when a part must be printed or fit onto uneven surfaces. Such situations will arise with increasing frequency as additive manufacturing application areas such as construction and medical devices continue to grow. In this work, we develop a simple and practical approach to generate toolpaths to print 3D structures onto uneven surfaces conformally. The algorithm uses only conventional planar toolpaths of both the structure to be printed and the substrate to be printed on and converts these to non-planar toolpaths, allowing easy integration with existing additive manufacturing workflows. The technique is demonstrated by printing flexible seals onto bespoke rigid face mask frames conformally via a conventional single-material 3D printer using the generated conformal toolpath. A notable improvement in air seal performance was observed for customized face masks with conformal soft seals compared to conventionally 3D-printed fully rigid face masks. This also shows the potential of the developed toolpath generation method to aid in the prototyping and fabrication of conformal medical and other devices.
Collapse
Affiliation(s)
- Zehao Ji
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Douglas A J Brion
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Kerr D G Samson
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Sebastian W Pattinson
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| |
Collapse
|
6
|
Breskovic T, Stefanovic B, Bednarcikova L, Ferencik N, Ondrejova B, Zivcak J. Predictive analysis of the scoliotic curve using a subject's 3D model. Proc Inst Mech Eng H 2023; 237:1001-1007. [PMID: 37439448 DOI: 10.1177/09544119231187295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
A predictive analysis of the conservative scoliosis treatment is necessary, in which a 3D model of an optimal treatment algorithm is a basic part in the design of a prosthetic corset. Since CAD technology has proven to be very useful in the field of prosthetics and orthotics, we used an open-source software to plan the correction of the scoliotic curve on a virtual model of the subject's torso. The shape of the scoliosis was simplified by means of a directional polygon, which was drawn in a reverse manner depending on the directional arcs of the scoliotic curve. The resulting scoliosis correction, simulated in a predictive analysis, was defined by changing the Cobb angle, eccentricity, and torso height. With the proposed low-cost method of predictive analysis, it is possible to help CPOs to a more accurate and effective design of orthoses and corrective aids and to comprehensively determine the entire treatment procedure.
Collapse
Affiliation(s)
- Tomas Breskovic
- Department of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
| | - Branko Stefanovic
- Department of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
| | - Lucia Bednarcikova
- Department of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
| | - Norbert Ferencik
- Department of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
| | - Bibiana Ondrejova
- Department of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
| | - Jozef Zivcak
- Department of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia
| |
Collapse
|
7
|
Kropla F, Winkler D, Lindner D, Knorr P, Scholz S, Grunert R. Development of 3D printed patient-specific skull implants based on 3d surface scans. 3D Print Med 2023; 9:19. [PMID: 37389692 DOI: 10.1186/s41205-023-00183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
Sometimes cranioplasty is necessary to reconstruct skull bone defects after a neurosurgical operation. If an autologous bone is unavailable, alloplastic materials are used. The standard technical approach for the fabrication of cranial implants is based on 3D imaging by computed tomography using the defect and the contralateral site. A new approach uses 3D surface scans, which accurately replicate the curvature of the removed bone flap. For this purpose, the removed bone flap is scanned intraoperatively and digitized accordingly. When using a design procedure developed for this purpose creating a patient-specific implant for each bone flap shape in short time is possible. The designed skull implants have complex free-form surfaces analogous to the curvature of the skull, which is why additive manufacturing is the ideal manufacturing technology here. In this study, we will describe the intraoperative procedure for the acquisition of scanned data and its further processing up to the creation of the implant.
Collapse
Affiliation(s)
- Fabian Kropla
- Department of Neurosurgery, University of Leipzig, 04103, Leipzig, SN, Germany.
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr. 20, 04103, Leipzig, Germany.
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - Dirk Winkler
- Department of Neurosurgery, University of Leipzig, 04103, Leipzig, SN, Germany
| | - Dirk Lindner
- Department of Neurosurgery, University of Leipzig, 04103, Leipzig, SN, Germany
| | - Patrick Knorr
- Department for Automotive and Mechanical Engineering, University of Applied Sciences Zwickau, 08056, Zwickau, SN, Germany
| | - Sebastian Scholz
- Fraunhofer Institute for Machine Tools and Forming Technology, 02763, Zittau, SN, Germany
| | - Ronny Grunert
- Department of Neurosurgery, University of Leipzig, 04103, Leipzig, SN, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, 02763, Zittau, SN, Germany
| |
Collapse
|
8
|
Pepelnjak T, Stojšić J, Sevšek L, Movrin D, Milutinović M. Influence of Process Parameters on the Characteristics of Additively Manufactured Parts Made from Advanced Biopolymers. Polymers (Basel) 2023; 15:polym15030716. [PMID: 36772018 PMCID: PMC9922018 DOI: 10.3390/polym15030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, additive manufacturing (AM) has become a reliable tool for prototyping and low-volume production. In recent years, the market share of such products has increased rapidly as these manufacturing concepts allow for greater part complexity compared to conventional manufacturing technologies. Furthermore, as recyclability and biocompatibility have become more important in material selection, biopolymers have also become widely used in AM. This article provides an overview of AM with advanced biopolymers in fields from medicine to food packaging. Various AM technologies are presented, focusing on the biopolymers used, selected part fabrication strategies, and influential parameters of the technologies presented. It should be emphasized that inkjet bioprinting, stereolithography, selective laser sintering, fused deposition modeling, extrusion-based bioprinting, and scaffold-free printing are the most commonly used AM technologies for the production of parts from advanced biopolymers. Achievable part complexity will be discussed with emphasis on manufacturable features, layer thickness, production accuracy, materials applied, and part strength in correlation with key AM technologies and their parameters crucial for producing representative examples, anatomical models, specialized medical instruments, medical implants, time-dependent prosthetic features, etc. Future trends of advanced biopolymers focused on establishing target-time-dependent part properties through 4D additive manufacturing are also discussed.
Collapse
Affiliation(s)
- Tomaž Pepelnjak
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-47-71-734
| | - Josip Stojšić
- Mechanical Engineering Faculty in Slavonski Brod, University of Slavonski Brod, Trg Ivane Brlić Mažuranić 2, 35000 Slavonski Brod, Croatia
| | - Luka Sevšek
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Dejan Movrin
- Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Mladomir Milutinović
- Department for Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Evans LM, Sözümert E, Keenan BE, Wood CE, du Plessis A. A Review of Image-Based Simulation Applications in High-Value Manufacturing. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1495-1552. [PMID: 36685137 PMCID: PMC9847465 DOI: 10.1007/s11831-022-09836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/15/2022] [Indexed: 06/17/2023]
Abstract
Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the 'as designed' and 'as manufactured' state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature.
Collapse
Affiliation(s)
- Llion Marc Evans
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB UK
| | - Emrah Sözümert
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN UK
| | - Bethany E. Keenan
- Cardiff School of Engineering, Cardiff University, Cardiff, CF24 3AA UK
| | - Charles E. Wood
- School of Mechanical & Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ UK
| | - Anton du Plessis
- Object Research Systems, Montreal, H3B 1A7 Canada
- Research Group 3DInnovation, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
10
|
Jarl G, Rusaw DF, Terrill AJ, Barnett CT, Woodruff MA, Lazzarini PA. Personalized Offloading Treatments for Healing Plantar Diabetic Foot Ulcers. J Diabetes Sci Technol 2023; 17:99-106. [PMID: 35658555 PMCID: PMC9846383 DOI: 10.1177/19322968221101632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Non-removable knee-high devices are the gold-standard offloading treatments to heal plantar diabetic foot ulcers (DFUs). These devices are underused in practice for a variety of reasons. Recommending these devices for all patients, regardless of their circumstances and preferences influencing their ability to tolerate the devices, does not seem a fruitful approach. PURPOSE The aim of this article is to explore the potential implications of a more personalized approach to offloading DFUs and suggest avenues for future research and development. METHODS Non-removable knee-high devices effectively heal plantar DFUs by reducing plantar pressure and shear at the DFU, reducing weight-bearing activity and enforcing high adherence. We propose that future offloading devices should be developed that aim to optimize these mechanisms according to each individual's needs. We suggest three different approaches may be developed to achieve such personalized offloading treatment. First, we suggest modular devices, where different mechanical features (rocker-bottom sole, knee-high cast walls/struts, etc.) can be added or removed from the device to accommodate different patients' needs and the evolving needs of the patient throughout the treatment period. Second, advanced manufacturing techniques and novel materials could be used to personalize the design of their devices, thereby improving common hindrances to their use, such as devices being heavy, bulky, and hot. Third, sensors could be used to provide real-time feedback to patients and clinicians on plantar pressures, shear, weight-bearing activity, and adherence. CONCLUSIONS By the use of these approaches, we could provide patients with personalized devices to optimize plantar tissue stress, thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Gustav Jarl
- Department of Prosthetics and
Orthotics, Faculty of Medicine and Health, Örebro University, Örebro,
Sweden
- University Health Care Research
Center, Faculty of Medicine and Health, Örebro University, Örebro,
Sweden
- Gustav Jarl, PhD, University Health
Care Research Center, Örebro University Hospital, S-huset, vån 1,
Örebro, SE-701 85, Sweden.
| | - David F. Rusaw
- School of Health and Welfare,
Jönköping University, Jönköping, Sweden
| | - Alexander J. Terrill
- School of Mechanical, Medical and
Process Engineering, Queensland University of Technology, Brisbane, QLD,
Australia
- Centre for Biomedical
Technologies, Queensland University of Technology, Brisbane, QLD,
Australia
- Faculty of Health, Southern Cross
University, Gold Coast, QLD, Australia
| | | | - Maria A. Woodruff
- School of Mechanical, Medical and
Process Engineering, Queensland University of Technology, Brisbane, QLD,
Australia
- Centre for Biomedical
Technologies, Queensland University of Technology, Brisbane, QLD,
Australia
| | - Peter A. Lazzarini
- School of Public Health and
Social Work, Queensland University of Technology, Brisbane, Australia
- Allied Health Research
Collaborative, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
11
|
Myung N, Jin S, Cho HJ, Kang HW. User-designed device with programmable release profile for localized treatment. J Control Release 2022; 352:685-699. [PMID: 36328077 DOI: 10.1016/j.jconrel.2022.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional printing enables precise and on-demand manufacture of customizable drug delivery systems to advance healthcare toward the goal of personalized medicine. However, major challenges remain in realizing personalized drug delivery that fits a patient-specific drug dosing schedule using local drug delivery systems. In this study, a user-designed device is developed as implantable therapeutics that can realize personalized drug release kinetics by programming the inner structural design on the microscale. The drug release kinetics required for various treatments, including dose-dense therapy and combination therapy, can be implemented by controlling the dosage and combination of drugs along with the rate, duration, initiation time, and time interval of drug release according to the device layer design. After implantation of the capsular device in mice, the in vitro-in vivo and pharmacokinetic evaluation of the device is performed, and the therapeutic effect of the developed device is achieved through the local release of doxorubicin. The developed user-designed device provides a novel platform for developing next-generation drug delivery systems for personalized and localized therapy.
Collapse
Affiliation(s)
- Noehyun Myung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea
| | - Seokha Jin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea
| | - Hyung Joon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea.
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea.
| |
Collapse
|
12
|
Chhikara K, Singh G, Gupta S, Chanda A. Progress of Additive Manufacturing in Fabrication of Foot Orthoses for Diabetic Patients: A Review. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Design of Personalized Cervical Fixation Orthosis Based on 3D Printing Technology. Appl Bionics Biomech 2022; 2022:8243128. [PMID: 35535322 PMCID: PMC9078801 DOI: 10.1155/2022/8243128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The movement of the cervical spine should be restricted throughout the rehabilitation phase after it has been injured. Cervical orthosis is commonly utilized in clinical settings to guarantee cervical spine stability. However, to date, the investigations are limited to patient-specific cervical fixation orthoses. This study provides a new idea for making personalized orthoses. The CT data of the patient's cervical spine were collected, then mimics were used for reconstructing the skin of the cervical spine, the Geomagic Studio was used for surface fitting, the Inspire Studio was used for structural topology optimization, redundant structures were removed, the resulting orthotics were postprocessed, and finally, it was printed with a 3D printer. No signs of pain or discomfort were observed during the wearing. The cervical spine range of motion in flexion, extension, lateral flexion, and rotation is all less than 8° after using the device. Low cost, quick manufacturing time, high precision, attractive appearance, lightweight structure, waterproof design, and practical customized orthotics for patients are all advantages of 3D printing technology in the field of orthopedics. Many possible benefits of using 3D printing to build new orthotics include unique design, stiffness, weight optimization, and improved biomechanical performance, comfort, and fit. Personalized orthotics may be designed and manufactured utilizing 3D printing technology.
Collapse
|
14
|
Abstract
Abstract
3D printing belongs to the emerging technologies of our time. Describing diverse specific techniques, 3D printing enables rapid production of individual objects and creating shapes that would not be produced with other techniques. One of the drawbacks of typical 3D printing processes, however, is the layered structure of the created parts. This is especially problematic in the production of optical elements, which in most cases necessitate highly even surfaces. To meet this challenge, advanced 3D printing techniques as well as other sophisticated solutions can be applied. Here, we give an overview of 3D printed optical elements, such as lenses, mirrors, and waveguides, with a focus on freeform optics and other elements for which 3D printing is especially well suited.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Silesian University of Technology, Institute of Physics – Center for Science and Education , 44-100 Gliwice , Poland
| | - Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM) , 33619 Bielefeld , Germany
| | - Andrea Ehrmann
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics , 33619 Bielefeld , Germany
| |
Collapse
|
15
|
Rezvani Ghomi E, Khosravi F, Neisiany RE, Singh S, Ramakrishna S. Future of additive manufacturing in healthcare. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2020.100255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Guvener O, Eyidogan A, Oto C, Huri PY. Novel additive manufacturing applications for communicable disease prevention and control: focus on recent COVID-19 pandemic. EMERGENT MATERIALS 2021; 4:351-361. [PMID: 33585795 PMCID: PMC7874037 DOI: 10.1007/s42247-021-00172-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/24/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 disease caused by the SARS-CoV-2 virus has had serious adverse effects globally in 2020 which are foreseen to extend in 2021, as well. The most important of these effects was exceeding the capacity of the healthcare infrastructures, and the related inability to meet the need for various medical equipment especially within the first months of the crisis following the emergence and rapid spreading of the virus. Urgent global demand for the previously unavailable personal protective equipment, sterile disposable medical supplies as well as the active molecules including vaccines and drugs fueled the need for the coordinated efforts of the scientific community. Amid all this confusion, the rapid prototyping technology, 3D printing, has demonstrated its competitive advantage by repositioning its capabilities to respond to the urgent need. Individual and corporate, amateur and professional all makers around the world with 3D printing capacity became united in effort to fill the gap in the supply chain until mass production is available especially for personal protective equipment and other medical supplies. Due to the unexpected, ever-changing nature of the COVID-19 pandemic-like all other potential communicable diseases-the need for rapid design and 3D production of parts and pieces as well as sterile disposable medical equipment and consumables is likely to continue to keep its importance in the upcoming years. This review article summarizes how additive manufacturing technology can contribute to such cases with special focus on the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Orcun Guvener
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Veterinary Medicine, Department of Anatomy, Ankara, Turkey
| | - Abdullah Eyidogan
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| | - Cagdas Oto
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Veterinary Medicine, Department of Anatomy, Ankara, Turkey
| | - Pinar Yilgor Huri
- Ankara University Medical Design Research and Application Center, MEDITAM, Ankara, Turkey
- Ankara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Turkey
| |
Collapse
|
17
|
Chow L, Yick KL, Sun Y, Leung MSH, Kwan MY, Ng SP, Yu A, Yip J, Chan YF. A Novel Bespoke Hypertrophic Scar Treatment: Actualizing Hybrid Pressure and Silicone Therapies with 3D Printing and Scanning. Int J Bioprint 2021; 7:327. [PMID: 33585716 PMCID: PMC7875059 DOI: 10.18063/ijb.v7i1.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/30/2020] [Indexed: 12/02/2022] Open
Abstract
The treatment of hypertrophic scars (HSs) is considered to be the most challenging task in wound rehabilitation. Conventional silicone sheet therapy has a positive effect on the healing process of HSs. However, the dimensions of the silicone sheet are typically larger than those of the HS itself which may negatively impact the healthy skin that surrounds the HS. Furthermore, the debonding and displacement of the silicone sheet from the skin are critical problems that affect treatment compliance. Herein, we propose a bespoke HS treatment design that integrates pressure sleeve with a silicone sheet and use of silicone gel using a workflow of three-dimensional (3D) printing, 3D scanning and computer-aided design, and manufacturing software. A finite element analysis (FEA) is used to optimize the control of the pressure distribution and investigate the effects of the silicone elastomer. The result shows that the silicone elastomer increases the amount of exerted pressure on the HS and minimizes unnecessary pressure to other parts of the wrist. Based on this treatment design, a silicone elastomer that perfectly conforms to an HS is printed and attached onto a customized pressure sleeve. Most importantly, unlimited scar treating gel can be applied as the means to optimize treatment of HSs while the silicone sheet is firmly affixed and secured by the pressure sleeve.
Collapse
Affiliation(s)
- Lung Chow
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Kit-lun Yick
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Yue Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
- School of Fashion Design and Engineering, Zhejiang Sci-Tech University, Hangzhou
| | - Matthew S. H. Leung
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Mei-ying Kwan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Sun-pui Ng
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong
| | - Annie Yu
- Department of Advanced Fibro Science, Kyoto Institute of Technology, Japan
| | - Joanne Yip
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Ying-fan Chan
- Department of Occupational Therapy, Prince of Wales Hospital, Hong Kong
| |
Collapse
|