1
|
Elhaieg A, Farag A, Elfadadny A, Yokoi A, Hendawy H, Mandour AS, Tanaka R. Effect of experimental periodontitis on cardiac functions: a comprehensive study using echocardiography, hemodynamic analysis, and histopathological evaluation in a rat model. Front Vet Sci 2023; 10:1327484. [PMID: 38179330 PMCID: PMC10764594 DOI: 10.3389/fvets.2023.1327484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Periodontitis is a prevalent and severe dental condition characterized by the gradual degradation of the bone surrounding the teeth. Over the past two decades, numerous epidemiological investigations have suggested a potential link between periodontitis and cardiovascular disease. However, the complex mechanistic relationship between oral health issues and cardiovascular disorders remains unclear. Aim This study aimed to explore comprehensively the cardiac function through various methods, including conventional echocardiography, intraventricular pressure gradient (IVPG) analysis, speckle tracking echocardiography (STE), and hemodynamics analysis. Methods Ligature-induced periodontitis was established in a group of rats while the second group served as sham. The successful establishment of the periodontitis model was confirmed through staining and radiographic examination of the affected mandibles. Results X-ray films and methylene blue staining revealed alveolar bone resorption in the affected first molar in the model rats, confirming the successful induction of periodontitis. The rats with periodontitis displayed a decrease in ejection fraction compared to the sham group, accompanied by a decrease in mid-to-apical IVPG and mid IVPG. Lower values of strain rate were recorded in the apical segment of the septum, the middle segment of the septum, and the basal segment of the lateral free wall in the periodontitis group, which was associated with histopathological examination showing some degree of myocardial tissue damage. Conversely, rats with periodontitis showed an increase in heart rate, end-systolic volume, and arterial elastance when compared to the sham rats. However, they also exhibited a decrease in stroke work, stroke volume, cardiac output, and end-systolic pressure. Conclusion This study suggests that experimental periodontitis may lead to cardiac dysfunction especially compromised systolic function and myocardial relaxation, potentially indicating an increased risk of cardiovascular events in clinical periodontitis cases. The comprehensive assessment of cardiac function, hemodynamics, and histopathological evaluation underscores the profound impact of periodontitis on heart functions within this specific experimental model.
Collapse
Affiliation(s)
- Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhour, Egypt
| | - Aimi Yokoi
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
2
|
Carra MC, Rangé H, Caligiuri G, Bouchard P. Periodontitis and atherosclerotic cardiovascular disease: A critical appraisal. Periodontol 2000 2023. [PMID: 37997210 DOI: 10.1111/prd.12528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/12/2023] [Indexed: 11/25/2023]
Abstract
In spite of intensive research efforts driving spectacular advances in terms of prevention and treatments, cardiovascular diseases (CVDs) remain a leading health burden, accounting for 32% of all deaths (World Health Organization. "Cardiovascular Diseases (CVDs)." WHO, February 1, 2017, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)). Cardiovascular diseases are a group of disorders affecting the heart and blood vessels. They encompass a collection of different conditions, among which atherosclerotic cardiovascular disease (ASCVD) is the most prevalent. CVDs caused by atherosclerosis, that is, ASCVD, are particularly fatal: with heart attack and stroke being together the most prevalent cause of death in the world. To reduce the health burden represented by ASCVD, it is urgent to identify the nature of the "residual risk," beyond the established risk factors (e.g., hypertension) and behavioral factors already maximally targeted by drugs and public health campaigns. Remarkably, periodontitis is increasingly recognized as an independent cardiovascular risk factor.
Collapse
Affiliation(s)
- Maria Clotilde Carra
- UFR d'Odontologie, Université Paris Cité, Paris, France
- Service of Odontology, Periodontal and Oral Surgery Unit, Rothschild Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- INSERM- Sorbonne Paris Cité Epidemiology and Statistics Research Centre (CRESS), Paris, France
| | - Hélène Rangé
- UFR d'Odontologie, Université de Rennes, Rennes, France
- Service of Odontology, Centre Hospitalier Universitaire de Rennes, Rennes, France
- NUMECAN Institute (Nutrition Metabolisms and Cancer), INSERM, INRAE, University of Rennes, Rennes, France
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, Laboratory for Vascular Translational Science (LVTS), Paris, France
- Department of Cardiology and of Physiology, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Bouchard
- UFR d'Odontologie, Université Paris Cité, Paris, France
- URP 2496, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Salgado HC, Brognara F, Ribeiro AB, Lataro RM, Castania JA, Ulloa L, Kanashiro A. Autonomic Regulation of Inflammation in Conscious Animals. Neuroimmunomodulation 2023; 30:102-112. [PMID: 37232031 DOI: 10.1159/000530908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.
Collapse
Affiliation(s)
- Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fernanda Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Renata Maria Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexandre Kanashiro
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin Medical Sciences Center, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Franchin M, Taira TM, da Silva Prado D, Hernandez CAS, de Andrade FB, Abdalla HB, Napimoga MH, Cunha TM, Fukada SY, Rosalen PL. PI3Kγ controls IL-17A expression and attenuates alveolar bone loss in an experimental periodontitis model. Inflamm Res 2023; 72:107-114. [PMID: 36333479 DOI: 10.1007/s00011-022-01662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE In this study, we investigated the modulatory effects of PI3Kγ on IL-17A expression and the progression of experimental periodontitis in vivo. METHODS Ligature-induced periodontitis was developed around the first molar of mice. Animals were treated with anti-mouse IL-17A or IPI-549 (PI3Kγ inhibitor). In addition, PI3Kγ-deficient mice (PI3Kγ-/-) were used in the study. Alveolar bone loss was measured and real-time PCR of Il17a and Rankl genes was performed. A bioinformatics analysis was carried out using the Gene Set Enrichment Analysis computational tool. RESULTS Nine days after ligature placement, alveolar bone loss scores were significantly increased, with upregulation of Il17a and Rankl genes in the gingival tissues. Treatment with anti-mouse IL-17A (100 µg/mice) significantly attenuated alveolar bone loss. Mice with ligature-induced periodontitis treated with IPI-549 (3 mg/kg) or PI3Kγ-/- mice showed reduced alveolar bone loss and downregulation of Il17a and Rankl gene expression in the gingival tissues. Consistent with this, the bioinformatics analysis showed upregulation of IL17F, IL17A, IL17D, and STAT3 genes, as well as greater activation of IL-17 and PI3KCI pathways (upregulation of PIK3CG gene) in the gingival tissue of patients with periodontitis. CONCLUSION PI3Kγ plays an important role in modulating IL-17A expression and alveolar bone loss in vivo and can be considered a promising pathway for the management of periodontal disease and the development of new therapies.
Collapse
Affiliation(s)
- Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
- School of Dentistry, Federal University Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | - Thaise Mayumi Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Douglas da Silva Prado
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Fabio Bonifácio de Andrade
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sandra Yasuyo Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
- Graduate Program in Biological Sciences, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| |
Collapse
|
5
|
Matsuo I, Ohnuki Y, Suita K, Ishikawa M, Mototani Y, Ito A, Hayakawa Y, Nariyama M, Morii A, Kiyomoto K, Tsunoda M, Gomi K, Okumura S. Effects of chronic Porphylomonas gingivalis lipopolysaccharide infusion on cardiac dysfunction in mice. J Oral Biosci 2021; 63:394-400. [PMID: 34757204 DOI: 10.1016/j.job.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Periodontitis (PD) is a chronic inflammatory disease of tooth-supportive tissue. An association between PD and cardiovascular disease (CVD) has been established. Although PD is generally accepted as a risk factor for CVD, the existence of a relationship remains debatable. Possible mechanisms include the release of inflammatory mediators such as lipopolysaccharide (LPS), which may spread systemically and promote CVD. METHODS To compare the effects of lipopolysaccharide derived from Porphylomonas gingivalis (PG-LPS) on cardiac muscle in mice, mice were treated for 1 week with/without PG-LPS at a dose equivalent to the circulating level in PD patients (0.8 mg/kg/day). RESULTS Cardiac function in terms of left ventricular ejection function was significantly decreased at 1 week compared to that in the control (from 66 ± 0.5% to 57 ± 1.1%). Compared to the controls, the number of apoptotic myocytes and the area of fibrosis were significantly increased by approximately 2.7-fold and 14-fold, respectively. The impairment of cardiac function appeared to involve the activation of cAMP/PKA signaling and cAMP/calmodulin kinase II signaling (CaMKII), leading to cardiac fibrosis, myocyte apoptosis and heart failure. CONCLUSIONS Our results indicate that cAMP/PKA and cAMP/CaMKII signaling may be a new therapeutic target for the treatment of cardiovascular diseases in patients with periodontitis.
Collapse
Affiliation(s)
- Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan.
| |
Collapse
|
6
|
Ribeiro AB, da Silva TM, Santos-Júnior NN, Castania JA, Fazan R, Salgado HC. Short-term effect of ligature-induced periodontitis on cardiovascular variability and inflammatory response in spontaneously hypertensive rats. BMC Oral Health 2021; 21:515. [PMID: 34635094 PMCID: PMC8507371 DOI: 10.1186/s12903-021-01885-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We previously reported that periodontal disease (PD) induces high arterial pressure variability (APV) consistent with sympathetic overactivity and elicits myocardial inflammation in Balb/c mice. However, it is unknown whether PD can change APV and heart rate variability (HRV) in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. This study aimed to evaluate the hemodynamic level, HRV, and APV associating with myocardial inflammation and plasma concentrations of oxide nitric (NO) in SHR and WKY rats with PD. METHODS Three weeks after bilateral ligation of the first mandibular molar, or Sham operation, the rats received catheters into the femoral artery and had their arterial pressure (AP) recorded the following day. Subsequently, plasma, heart, and jaw were collected. The NO was quantified by the chemiluminescence method in plasma, and the myocardial IL-1β concentrations were evaluated by ELISA. In the jaw was evaluated linear alveolar bone loss induced by PD. RESULTS The linear alveolar bone loss in jaws of SHR with PD was higher than in all other groups. AP and heart rate were higher in SHR than in their WKY counterparts. SHR with PD showed lower AP than control SHR. HRV and APV were different between SHR and WKY rats; however, no differences in these parameters were found between the animals with PD and their control counterparts. Plasma NO and myocardial IL-1β concentrations were higher in SHR with PD as compared to control WKY. A significant correlation was found between linear alveolar bone loss and plasma NO and myocardial IL-1β concentrations. CONCLUSION Our results demonstrated that short-term PD lowered the AP in SHR, which might be due to the higher levels of plasma NO. Even though PD did not affect either HRV or APV, it did induce myocardial inflammation, which can determine cardiovascular dysfunction in long-term PD.
Collapse
Affiliation(s)
- Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Thais Marques da Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Nilton Nascimento Santos-Júnior
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
7
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|
8
|
Ribeiro AB, Brognara F, da Silva JF, Castania JA, Fernandes PG, Tostes RC, Salgado HC. Carotid sinus nerve stimulation attenuates alveolar bone loss and inflammation in experimental periodontitis. Sci Rep 2020; 10:19258. [PMID: 33159128 PMCID: PMC7648828 DOI: 10.1038/s41598-020-76194-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Baroreceptor and chemoreceptor reflexes modulate inflammatory responses. However, whether these reflexes attenuate periodontal diseases has been poorly examined. Thus, the present study determined the effects of electrical activation of the carotid sinus nerve (CSN) in rats with periodontitis. We hypothesized that activation of the baro and chemoreflexes attenuates alveolar bone loss and the associated inflammatory processes. Electrodes were implanted around the CSN, and bilateral ligation of the first mandibular molar was performed to, respectively, stimulate the CNS and induce periodontitis. The CSN was stimulated daily for 10 min, during nine days, in unanesthetized animals. On the eighth day, a catheter was inserted into the left femoral artery and, in the next day, the arterial pressure was recorded. Effectiveness of the CNS electrical stimulation was confirmed by hypotensive responses, which was followed by the collection of a blood sample, gingival tissue, and jaw. Long-term (9 days) electrical stimulation of the CSN attenuated bone loss and the histological damage around the first molar. In addition, the CSN stimulation also reduced the gingival and plasma pro-inflammatory cytokines induced by periodontitis. Thus, CSN stimulation has a protective effect on the development of periodontal disease mitigating alveolar bone loss and inflammatory processes.
Collapse
Affiliation(s)
- Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Josiane Fernandes da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|