1
|
Hrahsheh F, Jum'h I, Wilemski G. Second inflection point of supercooled water surface tension induced by hydrogen bonds: A molecular-dynamics study. J Chem Phys 2024; 160:114504. [PMID: 38506292 DOI: 10.1063/5.0185832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Surface tension of supercooled water is a fundamental property in various scientific processes. In this study, we perform molecular dynamics simulations with the TIP4P-2005 model to investigate the surface tension of supercooled water down to 220 K. Our results show a second inflection point (SIP) in the surface tension at temperature TSIP ≈ 267.5 ± 2.3 K. Using an extended IAPWS-E functional fit for the water surface tension, we calculate the surface excess internal-energy and entropy terms of the excess Helmholtz free energy. Similar to prior studies [Wang et al., Phys. Chem. Chem. Phys. 21, 3360 (2019); Gorfer et al., J. Chem. Phys. 158, 054503 (2023)], our results show that the surface tension is governed by two driving forces: a surface excess entropy change above the SIP and a surface excess internal-energy change below it. We study hydrogen-bonding near the SIP because it is the main cause of water's anomalous properties. With decreasing temperature, our results show that the entropy contribution to the surface tension reaches a maximum slightly below the SIP and then decreases. This is because the number of hydrogen bonds increases more slowly below the SIP. Moreover, the strengths and lifetimes of the hydrogen bonds also rise dramatically below the SIP, causing the internal-energy term to dominate the excess surface free energy. Thus, the SIP in the surface tension of supercooled TIP4P-2005 water is associated with an increase in the strengths and lifetimes of hydrogen bonds, along with a decrease in the formation rate (#/K) of new hydrogen bonds.
Collapse
Affiliation(s)
- Fawaz Hrahsheh
- Higher Colleges of Technology, ETS, MZWC, Abu Dhabi 25026, United Arab Emirates
| | - Inshad Jum'h
- School of Basic Sciences and Humanities, German Jordanian University, Amman 11180, Jordan
| | - Gerald Wilemski
- Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
2
|
Belosludov RV, Gets KV, Zhdanov RK, Bozhko YY, Belosludov VR, Chen LJ, Kawazoe Y. Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure. Molecules 2023; 28:2960. [PMID: 37049727 PMCID: PMC10095827 DOI: 10.3390/molecules28072960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.
Collapse
Affiliation(s)
| | - Kirill V. Gets
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ravil K. Zhdanov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yulia Y. Bozhko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir R. Belosludov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Li-Jen Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur 603203, India
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
3
|
Steber AL, Temelso B, Kisiel Z, Schnell M, Pérez C. Rotational dive into the water clusters on a simple sugar substrate. Proc Natl Acad Sci U S A 2023; 120:e2214970120. [PMID: 36802430 PMCID: PMC9992814 DOI: 10.1073/pnas.2214970120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/27/2022] [Indexed: 02/23/2023] Open
Abstract
Most biomolecular activity takes place in aqueous environments, and it is strongly influenced by the surrounding water molecules. The hydrogen bond networks that these water molecules form are likewise influenced by their interactions with the solutes, and thus, it is crucial to understand this reciprocal process. Glycoaldehyde (Gly), often considered the smallest sugar, represents a good template to explore the steps of solvation and determine how the organic molecule shapes the structure and hydrogen bond network of the solvating water cluster. Here, we report a broadband rotational spectroscopy study on the stepwise hydration of Gly with up to six water molecules. We reveal the preferred hydrogen bond networks formed when water molecules start to form three-dimensional (3D) topologies around an organic molecule. We observe that water self-aggregation prevails even in these early stages of microsolvation. These hydrogen bond networks manifest themselves through the insertion of the small sugar monomer in the pure water cluster in a way in which the oxygen atom framework and hydrogen bond network resemble those of the smallest three-dimensional pure water clusters. Of particular interest is the identification, in both the pentahydrate and hexahydrate, of the previously observed prismatic pure water heptamer motif. Our results show that some specific hydrogen bond networks are preferred and survive the solvation of a small organic molecule, mimicking those of pure water clusters. A many-body decomposition analysis of the interaction energy is also performed to rationalize the strength of a particular hydrogen bond, and it successfully confirms the experimental findings.
Collapse
Affiliation(s)
- Amanda L. Steber
- Deutsches Elektronen-Synchrotron (DESY), D-22607Hamburg, Germany
- Christian-Albrechts-Universität zu Kiel, Institute of Physical Chemistry, D-24118Kiel, Germany
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias & Instituto Universitario Centro de Innovación en Química y Materiales Avanzados, Universidad de Valladolid, ValladolidE-47011, Spain
| | - Berhane Temelso
- Division of Information Technology, College of Charleston, Charleston, SC29403
| | - Zbigniew Kisiel
- Institute of Physics, Polish Academy of Sciences, Warszawa02-668, Poland
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY), D-22607Hamburg, Germany
- Christian-Albrechts-Universität zu Kiel, Institute of Physical Chemistry, D-24118Kiel, Germany
| | - Cristóbal Pérez
- Deutsches Elektronen-Synchrotron (DESY), D-22607Hamburg, Germany
- Christian-Albrechts-Universität zu Kiel, Institute of Physical Chemistry, D-24118Kiel, Germany
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias & Instituto Universitario Centro de Innovación en Química y Materiales Avanzados, Universidad de Valladolid, ValladolidE-47011, Spain
| |
Collapse
|
4
|
Intermolecular Interaction of Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates by Low-Frequency Raman Observation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154743. [PMID: 35897917 PMCID: PMC9332565 DOI: 10.3390/molecules27154743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Semi-clathrate hydrates are attractive heat storage materials because the equilibrium temperatures, located above 0 °C in most cases, can be changed by selecting guest cations and anions. The equilibrium temperatures are influenced by the size and hydrophilicity of guest ions, hydration number, crystal structure, and so on. This indicates that intermolecular and/or interionic interaction in the semi-clathrate hydrates may be related to the variation of the equilibrium temperatures. Therefore, intermolecular and/or interionic interaction in semi-clathrate hydrates with quaternary onium salts was directly observed using low-frequency Raman spectroscopy, a type of terahertz spectroscopy. The results show that Raman peak positions were mostly correlated with the equilibrium temperatures: in the semi-clathrate hydrates with higher equilibrium temperatures, Raman peaks around 65 cm−1 appeared at a higher wavenumber and the other Raman peaks at around 200 cm−1 appeared at a lower wavenumber. Low-frequency Raman observation is a valuable tool with which to study the equilibrium temperatures in semi-clathrate hydrates.
Collapse
|
5
|
Quan K, Hou J, Zhang Z, Ren Y, Peterson BW, Flemming HC, Mayer C, Busscher HJ, van der Mei HC. Water in bacterial biofilms: pores and channels, storage and transport functions. Crit Rev Microbiol 2021; 48:283-302. [PMID: 34411498 DOI: 10.1080/1040841x.2021.1962802] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms occur in many natural and industrial environments. Besides bacteria, biofilms comprise over 70 wt% water. Water in biofilms occurs as bound- or free-water. Bound-water is adsorbed to bacterial surfaces or biofilm (matrix) structures and possesses different Infra-red and Nuclear-Magnetic-Resonance signatures than free-water. Bound-water is different from intra-cellularly confined-water or water confined within biofilm structures and bacteria are actively involved in building water-filled structures by bacterial swimmers, dispersion or lytic self-sacrifice. Water-filled structures can be transient due to blocking, resulting from bacterial growth, compression or additional matrix formation and are generally referred to as "channels and pores." Channels and pores can be distinguished based on mechanism of formation, function and dimension. Channels allow transport of nutrients, waste-products, signalling molecules and antibiotics through a biofilm provided the cargo does not adsorb to channel walls and channels have a large length/width ratio. Pores serve a storage function for nutrients and dilute waste-products or antimicrobials and thus should have a length/width ratio close to unity. The understanding provided here on the role of water in biofilms, can be employed to artificially engineer by-pass channels or additional pores in industrial and environmental biofilms to increase production yields or enhance antimicrobial penetration in infectious biofilms.
Collapse
Affiliation(s)
- Kecheng Quan
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Jiapeng Hou
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Brandon W Peterson
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences/Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Faculty of Chemistry, Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry, Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Sharma P, Sarma P, Frontera A, Hussain S, Verma AK, Bhattacharyya MK. Energetically significant anti-parallel π-stacking and unconventional anion-π interactions in phenanthroline based Ni(II) and Cu(II) coordination compounds: Antiproliferative evaluation and theoretical studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Chetry S, Sharma P, Frontera A, Saha U, Verma AK, Sarma B, Kalita PJ, Bhattacharyya MK. Biologically relevant and energetically significant cooperative ternary (π–π) 2/(π–π) 1/(π–π) 2 assemblies and fascinating discrete (H 2O) 21 clusters in isostructural 2,5-pyridine dicarboxylato Co( ii) and Zn( ii) phenanthroline compounds: antiproliferative evaluation and theoretical studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj04338a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytotoxicity in cancer cells with structure activity relationship has been explored in isostructural Co(ii) and Zn(ii) compounds involving energetically significant cooperative (π–π)2/(π–π)1/(π–π)2 assemblies and fascinating (H2O)21 clusters.
Collapse
Affiliation(s)
- Sanjib Chetry
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Utpal Saha
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology laboratory
- Cotton University
- Guwahati-781001
- India
| | - Bipul Sarma
- Department of Chemical Sciences
- Tezpur University
- India
| | | | | |
Collapse
|