1
|
Ghemrawi R, Kremesh S, Mousa WK, Khair M. The Role of ER Stress and the Unfolded Protein Response in Cancer. Cancer Genomics Proteomics 2025; 22:363-381. [PMID: 40280715 PMCID: PMC12041869 DOI: 10.21873/cgp.20507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Dysregulation of protein synthesis, folding, and secretion leads to endoplasmic reticulum (ER) stress, triggering the unfolded protein response (UPR). While the UPR is essential for cell survival under stress, its chronic activation in cancer cells supports tumorigenesis, metastasis, and chemoresistance by enabling cellular adaptation to hypoxia, nutrient deprivation, and oxidative stress. This review provides a comprehensive overview of the roles of key UPR mediators - binding immunoglobulin protein (BiP), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) - in cancer progression and therapy resistance. Furthermore, it discusses strategies to target UPR pathways, including small molecule inhibitors, gene therapies, natural compounds, and combination therapies, while it evaluates their preclinical and clinical relevance. Finally, it explores how modulating UPR signaling can overcome therapeutic resistance, improve immunotherapy outcomes, and reshape the tumor microenvironment. This review emphasizes the promise of UPR-targeted approaches in enhancing the efficacy of current cancer treatments and achieving better patient outcomes.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Walaa K Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Han J, Liang J, Zhou W, Zhang M, Jin T. Association between NUDT17 polymorphisms and breast cancer risk. Expert Rev Mol Diagn 2024; 24:459-466. [PMID: 38756100 DOI: 10.1080/14737159.2024.2353700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of cancer death among women worldwide. The nudix hydrolase 17 (NUDT17) may play notable roles in cancer growth and metastasis. In this study, we explored the importance of NUDT17 gene polymorphism in patients with BC. METHODS In our study, 563 BC patients and 552 healthy controls participated. We used logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI), and multifactor dimension reduction (MDR) analysis of SNP-SNP interactions. Finally, UALCAN and THPA databases were used for bioinformatics analysis. RESULTS The rs9286836 G allele was associated with a decreased the BC risk (p = 0.022), and the carriers of rs2004659 G allele had a 32% decreased risk of BC than individuals with allele A (p = 0.004). In the four genetic models, rs9286836 and rs2004659 reduced the risk of BC. Additionally, we found that the NUDT17 SNPs were associated with BC risk under age, tumor size, and clinical stage stratification. The MDR analysis showed that the five-locus interaction model was the best in the multi-locus model. CONCLUSION Our study found that NUDT17 single nucleotide polymorphisms are associated with BC susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Taiyab A, Choudhury A, Haidar S, Yousuf M, Rathi A, Koul P, Chakrabarty A, Islam A, Shamsi A, Hassan MI. Exploring MTH1 inhibitory potential of Thymoquinone and Baicalin for therapeutic targeting of breast cancer. Biomed Pharmacother 2024; 173:116332. [PMID: 38430630 DOI: 10.1016/j.biopha.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haidar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mohd Yousuf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aanchal Rathi
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Koul
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Ding Y, Liu Q. Targeting the nucleic acid oxidative damage repair enzyme MTH1: a promising therapeutic option. Front Cell Dev Biol 2024; 12:1334417. [PMID: 38357002 PMCID: PMC10864502 DOI: 10.3389/fcell.2024.1334417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
The accumulation of reactive oxygen species (ROS) plays a pivotal role in the development of various diseases, including cancer. Elevated ROS levels cause oxidative stress, resulting in detrimental effects on organisms and enabling tumors to develop adaptive responses. Targeting these enhanced oxidative stress protection mechanisms could offer therapeutic benefits with high specificity, as normal cells exhibit lower dependency on these pathways. MTH1 (mutT homolog 1), a homolog of Escherichia coli's MutT, is crucial in this context. It sanitizes the nucleotide pool, preventing incorporation of oxidized nucleotides, thus safeguarding DNA integrity. This study explores MTH1's potential as a therapeutic target, particularly in cancer treatment, providing insights into its structure, function, and role in disease progression.
Collapse
Affiliation(s)
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Jiangxi, China
| |
Collapse
|
7
|
Qiu X, Huang Y, Jin L, Yang C, Wang J. Roles of AFAP1-AS1 in Gynecology and Urogenital System. Curr Pharm Des 2024; 30:639-647. [PMID: 38347771 DOI: 10.2174/0113816128286229240129090915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Human disease onset and progression are strongly associated with aberrant long noncoding RNA (lncRNA) expression, highlighting the functional regulatory role of lncRNA. Actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), a member of lncRNAs, is located on the antisense strand of Actin filament-associated protein 1 (AFAP1). METHODS We conducted a comprehensive review of AFAP1-AS1's functions in gynecology and urogenital systems using the "PubMed" database. RESULTS Our analysis reveals that AFAP1-AS1 is overexpressed and engages in the initiation and process of gynecological and urogenital diseases. The regulatory mechanisms employed by AFAP1-AS1 involve four major strategies: gene-level effects, competition for microRNA (miRNA) repression, protein binding, participation in signaling networks that influence cellular processes such as proliferative phenotype, migration, invasiveness, epithelial-mesenchymal transition (EMT), cycle regulation, drug resistance, and more. Furthermore, AFAP1-AS1 is implicated in guiding clinicopathological characteristics. CONCLUSION AFAP1-AS1 holds promise as a potent diagnostics and treatment option for gynecological and genitourinary systems in the future.
Collapse
Affiliation(s)
- Xinyan Qiu
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yulin Huang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lin Jin
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Canying Yang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiwei Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
8
|
Yang Z, Huang T, Sheng C, Wang K, Li Y, Feng Y, Huo D, Duan F. Prognostic value of lncRNA AFAP1-AS1 in breast cancer: a meta-analysis and validated study in Chinese population. Cancer Rep (Hoboken) 2024; 7:e1923. [PMID: 37916733 PMCID: PMC10809272 DOI: 10.1002/cnr2.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Long non encoding RNA (lncRNA) plays a crucial role in breast cancer. However, the prognostic role of AFAP1-AS1 in breast cancer remains unclear. AIMS To investigate the relationship between the expression of long non-coding RNA actin filament-associated protein1 antisense RNA1 (AFAP1-AS1) and prognosis of breast cancer. METHODS AND RESULTS Meta-analysis was performed to explore the correlation between AFAP1-AS1 and breast cancer. The AFAP1-AS1expression in patients with breast cancer tissue and adjacent normal tissue from 153 patients was determined by qRT-PCR. Bioinformatics and Cox proportional-hazards risk model were used to explore the relationship between expression of AFAP1-AS1 and prognosis. The combined analysis revealed a significant correlation between AFAP1-AS1 expression and both overall survival (hazard ratios, HR = 2.33, 95%Cl: 1.94-2.81, p < 0.001) as well as disease-free survival/progression-free survival (HR = 2.94, 95%CI: 2.35-3.67, p < 0.001). The relation between expression of AFAP1-AS1 and breast cancer was determined in 153 breast cancer and adjacent normal tissues. The findings revealed a significantly higher AFAP1-AS1expression levels in breast cancer tissues compared to adjacent normal tissues (p < 0.001). Additionally, patients exhibiting heightened levels of AFAP1-AS1 expression were correlated with an unfavorable prognosis (HR = 2.35, 95%CI: 1.47-3.74, p < 0.001), which aligns consistently with the findings of the pooled analysis. The subgroup analysis of clinical characteristics revealed a significant association between high expression of AFAP1-AS1 and TNM stage (HR = 1.72, 95%CI: 1.11-2.65, p = 0.015). CONCLUSION This study demonstrated that AFAP1-AS1 acts as an oncogene and may serve as a novel prognostic marker for breast cancer, particularly in the Chinese population.
Collapse
Affiliation(s)
- Zhenxing Yang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Tao Huang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Chong Sheng
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Kaijuan Wang
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Yilin Li
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Yajing Feng
- Department of Hospital Infection Managementthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dandan Huo
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Fujiao Duan
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
9
|
Hota M, Barber JL, Ruiz-Ramie JJ, Schwartz CS, Lam DTUH, Rao P, Mi MY, Katz DH, Robbins JM, Clish CB, Gerszten RE, Sarzynski MA, Ghosh S, Bouchard C. Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability. Physiol Genomics 2023; 55:517-543. [PMID: 37661925 PMCID: PMC11178266 DOI: 10.1152/physiolgenomics.00163.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
Submaximal exercise capacity is an indicator of cardiorespiratory fitness with clinical and public health implications. Submaximal exercise capacity and its response to exercise programs are characterized by heritability levels of about 40%. Using physical working capacity (power output) at a heart rate of 150 beats/min (PWC150) as an indicator of submaximal exercise capacity in subjects of the HERITAGE Family Study, we have undertaken multi-omics and in silico explorations of the underlying biology of PWC150 and its response to 20 wk of endurance training. Our goal was to illuminate the biological processes and identify panels of genes associated with human variability in intrinsic PWC150 (iPWC150) and its trainability (dPWC150). Our bioinformatics approach was based on a combination of genome-wide association, skeletal muscle gene expression, and plasma proteomics and metabolomics experiments. Genes, proteins, and metabolites showing significant associations with iPWC150 or dPWC150 were further queried for the enrichment of biological pathways. We compared genotype-phenotype associations of emerging candidate genes with reported functional consequences of gene knockouts in mouse models. We investigated the associations between DNA variants and multiple muscle and cardiovascular phenotypes measured in HERITAGE subjects. Two panels of prioritized genes of biological relevance to iPWC150 (13 genes) and dPWC150 (6 genes) were identified, supporting the hypothesis that genes and pathways associated with iPWC150 are different from those underlying dPWC150. Finally, the functions of these genes and pathways suggested that human variation in submaximal exercise capacity is mainly driven by skeletal muscle morphology and metabolism and red blood cell oxygen-carrying capacity.NEW & NOTEWORTHY Multi-omics and in silico explorations of the genes and underlying biology of submaximal exercise capacity and its response to 20 wk of endurance training were undertaken. Prioritized genes were identified: 13 genes for variation in submaximal exercise capacity in the sedentary state and 5 genes for the response level to endurance training, with no overlap between them. Genes and pathways associated with submaximal exercise capacity in the sedentary state are different from those underlying trainability.
Collapse
Affiliation(s)
- Monalisa Hota
- Centre for Computational Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jacob L Barber
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Jonathan J Ruiz-Ramie
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
- Department of Kinesiology, Augusta University, Augusta, Georgia, United States
| | - Charles S Schwartz
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Do Thuy Uyen Ha Lam
- Centre for Computational Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Michael Y Mi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Clary B Clish
- Metabolomics Platform, Broad Institute, Boston, Massachusetts, United States
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Mark A Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Bioinformatics Section, Human Genomics Core, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
10
|
Li Q, Liu H, Jin Y, Yu Y, Wang Y, Wu D, Guo Y, Xi L, Ye D, Pan Y, Zhang X, Li J. Analysis of a new therapeutic target and construction of a prognostic model for breast cancer based on ferroptosis genes. Comput Biol Med 2023; 165:107370. [PMID: 37643511 DOI: 10.1016/j.compbiomed.2023.107370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer, which is the most common malignant tumor among women worldwide and an important cause of death in women. The existing prognostic model for patients with breast cancer is not accurate as breast cancer is resistant to commonly used antitumor drugs. Ferroptosis is a novel mechanism of programmed cell death that depends on iron accumulation and lipid peroxidation. Various studies have confirmed the role of ferroptosis in tumor regulation and ferroptosis is now considered to play an important role in breast cancer development. At present, the association between breast cancer prognosis and ferroptosis-related gene expression remains unclear. Further exploration of this research area may optimize the evaluation and prediction of prognosis of patients with breast cancer and finding of new therapeutic targets. In this study, clinical factors and the expression of multiple genes were evaluated in breast cancer samples from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database database. Eleven prognostication-related genes (TP63, IFNG, MT3, ANO6, FLT3, PTGS2, SLC1A4, JUN, SLC7A5, CHAC1, and TF) were identified from differentially expressed genes to construct a survival prediction model, which showed a good prediction ability. KEGG pathway analysis revealed that immune-related pathways were the primary pathways. ssGSEA analysis showed significant differences in the distribution of certain immune-related cell subsets, such as CD8+T cells and B cells, and in the expression of multiple immune genes, including type II IFN response and APC coinhibition. In addition, 10 immune targets related to ferroptosis in breast cancer were found: CD276, CD80, HHLA2, LILRA2, NCR3LG1, NECTIN3, PVR, SLAMF9,TNFSF4, and BTN1A1. Using TCGA, new ferroptosis genes related to breast cancer prognosis were identified, a new reliable and accurate prognosis model was developed, and 10 new potential therapeutic targets different from the traditional targeted drugs were identified to provide a reference for improving the poor prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Hengchen Liu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yun Jin
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yuanquan Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yihang Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Di Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yinghao Guo
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Longfu Xi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Dan Ye
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yanzhi Pan
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Xiaoxiao Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
11
|
Li F, Xian D, Huang J, Nie L, Xie T, Sun Q, Zhang X, Zhou Y. SP1-Induced Upregulation of LncRNA AFAP1-AS1 Promotes Tumor Progression in Triple-Negative Breast Cancer by Regulating mTOR Pathway. Int J Mol Sci 2023; 24:13401. [PMID: 37686205 PMCID: PMC10563082 DOI: 10.3390/ijms241713401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The long non-coding RNA (lncRNA) actin fiber-associated protein-1 antisense RNA 1 (AFAP1-AS1) exerted oncogenic activity in triple-negative breast cancer (TNBC). We designed this study and conducted it to investigate the upstream regulation mechanism of AFAP1-AS1 in TNBC tumorigenesis. In this work, we proved the localization of AFAP1-AS1 in the cytoplasm. We elucidated the mechanism by which the transcription factor specificity protein 1 (SP1) modulated AFAP1-AS1 in TNBC progression, which has yet to be thoroughly studied. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of SP1 toward the promoter regions P3 of AFAP1-AS1, proving the gene expression regulation of AFAP1-AS1 via SP1 in TNBC. Additionally, SP1 could facilitate the tumorigenesis of TNBC cells in vitro and in vivo by regulating the AFAP1-AS1 expression. Furthermore, silenced AFAP1-AS1 suppressed the expression of genes in the mTOR pathway, such as eukaryotic translation initiation factor 4B (EIF4B), mitogen-activated protein kinase-associated protein 1 (MAPKAP1), SEH1-like nucleoporin (SEH1L), serum/glucocorticoid regulated kinase 1 (SGK1), and its target NEDD4-like E3 ubiquitin protein ligase (NEDD4L), and promoted the gene expression of s-phase kinase-associated protein 2 (SKP2). Overall, this study emphasized the oncogenic role of SP1 and AFAP1-AS1 in TNBC and illustrated the AFAP1-AS1 upstream interaction with SP1 and the downstream modulatory of mTOR signaling, thus offering insights into the tumorigenesis mechanism in TNBC.
Collapse
Affiliation(s)
- Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Daheng Xian
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Junying Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Longzhu Nie
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Ting Xie
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| |
Collapse
|
12
|
Chen J, Ling C. Construction of a predictive model for breast cancer metastasis based on lncRNAs. Transl Cancer Res 2023; 12:387-397. [PMID: 36915588 PMCID: PMC10007891 DOI: 10.21037/tcr-23-129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 03/16/2023]
Abstract
Background There is currently a lack of biological markers to determine the risk of lymph node metastasis in breast cancer. A single long non-coding RNA (lncRNA) cannot accurately describe the heterogeneity of tumors. Thus, more accurate algorithms are needed to screen key pathogenic lncRNAs, and quantitative models are needed to describe the heterogeneity of breast cancer. Methods A whole transcriptome sequencing data set of breast cancer tissue samples was downloaded from The Cancer Genome Atlas database (n=1,091). A weighted correlation network analysis was conducted to identify the hub lncRNAs associated with lymph node metastasis. A logistic regression analysis was conducted to construct the risk score model. The relationship between the risk scores and the key lncRNAs and the infiltration of the immune cell subtypes was also explored. Results A total of 3 common lncRNAs were identified between the differentially expressed lncRNA set and the hub lncRNA set; that is, zinc finger protein 582-antisense RNA 1 (ZNF582-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and actin filament associated protein 1-antisense RNA 1 (AFAP1-AS1). The following formula was used to calculate the risk score: risk score =1.31 + 0.51 * ZNF582-AS1 - 0.66 * MALAT1 - 0.50 * AFAP1-AS1. The receiver operating characteristic curve showed that the areas under the curve for the risk score, ZNF582-AS1, MALAT1, and AFAP1-AS1 were 0.975, 0.793, 0.685, and 0764, respectively (P<0.05). The risk score was positively correlated with immune cell subtype infiltration. Conclusions ZNF582-AS1, MALAT1, and AFAP1-AS1 are the key lncRNAs involved in the lymph node metastasis of breast cancer. Our risk score model, which was based on ZNF582-AS1, MALAT1 and AFAP1-AS1, can accurately predict the risk of breast cancer lymph node metastasis. ZNF582-AS1, MALAT1, and AFAP1-AS1 are potential biomarkers for the lymph node metastasis of breast cancer.
Collapse
Affiliation(s)
- Jing Chen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chen Ling
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
13
|
Knockdown of Circ_0003506 Impedes Radioresistance, Cell Growth, Migration and Invasion in Gastric Cancer. Dig Dis Sci 2023; 68:128-137. [PMID: 35590046 DOI: 10.1007/s10620-022-07534-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radioresistance is a major obstacle for clinical treatment of gastric cancer (GC). has_circ_0003506 (circ_0003506) was reported as an oncogenic factor in GC, but its effect on radioresistant GC is unclear. AIMS This study aimed to explore the role of circ_0003506 in radioresistance and regulatory mechanism. METHODS The expression detection was performed by real-time polymerase chain reaction. Cell survival was analyzed by colony formation assay. Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assay. Cell migration and invasion were examined using transwell assay. Cell apoptosis was assessed by flow cytometry. The target binding was confirmed via dual-luciferase reporter assay. The protein level was determined through western blot. Animal assay was performed for the functional exploration of circ_0003506 on radiosensitivity in vivo. RESULTS Circ_0003506 was upregulated in radioresistant GC cells. Downregulation of circ_0003506 inhibited radioresistance to repress proliferation, migration and invasion but increase apoptosis in radioresistant GC cells. Circ_0003506 was a sponge of miR-1256. The effects of si-circ_0003506 on radioresistant GC cells were reverted by miR-1256 inhibitor. MiR-1256 suppressed tumor progression in radioresistant GC cells by downregulating bone morphogenetic protein type 2 receptor. Circ_0003506 regulated the level of bone morphogenetic protein type 2 receptor by targeting miR-1256. Downregulating circ_0003506 increased radiosensitivity of GC in vivo via regulating miR-1256 and bone morphogenetic protein type 2 receptor. CONCLUSION Knockdown of circ_0003506 suppressed radioresistance in GC through the regulation of miR-1256/bone morphogenetic protein type 2 receptor axis. Circ_0003506 might be a therapeutic target in radiotherapy of GC.
Collapse
|
14
|
Chen M, Shi S, Zhao J, Pan Q, Huang C, Shen Q, Liu Z. Propofol inhibits cell apoptosis and inflammatory response in ox-LDL-induced human umbilical vein endothelial cells through the modulation of the circ_0003645/miR-149-3p/TRAF7 axis. Clin Hemorheol Microcirc 2022:CH221437. [DOI: 10.3233/ch-221437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND: Propofol is an anesthetic agent and can impede the progression of human diseases. Circular RNA (circRNA) circ_0003645 has been identified to promote the development of atherosclerosis (AS). This study aimed at the functional mechanism of propofol and circ_0003645 in AS. METHODS: AS cell model was established by treatment of oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs). Cell viability or apoptosis detection was performed by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Circ_0003645, microRNA-149-3p (miR-149-3p) and tumor necrosis factor receptor-associated factor 7 (TRAF7) levels were determined by the quantitative real-time polymerase chain reaction (qRT-PCR). Inflammatory cytokines were examined using enzyme-linked immunosorbent assay (ELISA). Protein analysis was conducted by western blot. The interaction of miR-149-3p and circ_0003645 or TRAF7 was analyzed using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: Treatment of ox-LDL inhibited cell viability and enhanced apoptosis in HUVECs to establish the AS cell model. Propofol protected against cell viability inhibition and apoptosis promotion in AS cell model. Circ_0003645 expression was downregulated by propofol in AS cell model. Propofol alleviated cell apoptosis and inflammation by decreasing the circ_0003645 level. Circ_0003645 targeted miR-149-3p, and circ_0003645/miR-149-3p axis was involved in the functional regulation of propofol. TRAF7 was the target of miR-149-3p. Inhibition of miR-149-3p affected the function of propofol by upregulating the TRAF7 expression. Circ_0003645 sponged miR-149-3p to induce the upregulation of TRAF7 following propofol treatment. CONCLUSION: It has been suggested that propofol acted as an inhibitor against the ox-LDL-induced cell injury by the circ_0003645/miR-149-3p/TRAF7 axis.
Collapse
Affiliation(s)
- Min Chen
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Siren Shi
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Jianyong Zhao
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Qin Pan
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Changjun Huang
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Quanwei Shen
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Zhaohui Liu
- Department of Anesthesia, First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Zhai D, Zhang M, Li Y, Bi J, Kuang X, Shan Z, Shao N, Lin Y. LINC01194 recruits NUMA1 to promote ubiquitination of RYR2 to enhance malignant progression in triple-negative breast cancer. Cancer Lett 2022; 544:215797. [PMID: 35750275 DOI: 10.1016/j.canlet.2022.215797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Long intergenic nonprotein coding RNA 1194 (LINC01194) has been reported as an oncogene in several cancer types, but its expression and potential role in triple-negative breast cancer (TNBC) are still unclear. We found that LINC01194 was significantly highly expressed in TNBC based on The Cancer Genome Atlas (TCGA) database. Data from in vitro experiments and in vivo assays demonstrated that LINC01194 promoted TNBC progression. Through bioinformatics prediction, mass spectrometry, and mechanical experiments, we found that LINC01194 could recruit nuclear mitotic apparatus protein 1 (NUMA1) to bind to the untranslated region (3'UTR) of ubiquitin-conjugating enzyme E2 C (UBE2C) 3' and stabilize UBE2C mRNA. Moreover, we found that UBE2C acted as an ubiquitin ligase to promote the ubiquitination and degradation of ryanodine receptor type 2 (RYR2) that inhibited the progression of TNBC by inhibiting the Wnt/β-catenin signaling pathway. In summary, LINC01194 activate the Wnt/β-catenin signaling pathway and accelerates the malignant progression of TNBC by recruiting NUMA1 to stabilize UBE2C mRNA and thus promotes RYR2 ubiquitination and degradation. These findings might provide a more effective therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuying Li
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiong Bi
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaying Kuang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen Shan
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
CTCF-Induced lncRNA C5orf66-AS1 Facilitates the Progression of Triple-Negative Breast Cancer via Sponging miR-149-5p to Up-Regulate CTCF and CTNNB1 to Activate Wnt/β-Catenin Pathway. Mol Cell Biol 2022; 42:e0018821. [PMID: 35499320 DOI: 10.1128/mcb.00188-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents one of the subtypes of breast cancer with high aggressiveness. Long noncoding RNAs (lncRNAs) are well-known to function as crucial regulators in human cancers which include TNBC.
Collapse
|
17
|
Circ_0136474 contributes to the IL-1β-induced chondrocyte injury by binding to miR-665 to induce the FGFR1 upregulation. Transpl Immunol 2022:101615. [DOI: 10.1016/j.trim.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
|
18
|
Adebayo OO, Dammer EB, Dill CD, Adebayo AO, Oseni SO, Griffen TL, Ohandjo AQ, Yan F, Jain S, Barwick BG, Singh R, Boise LH, Lillard, Jr. JW. Multivariant Transcriptome Analysis Identifies Modules and Hub Genes Associated with Poor Outcomes in Newly Diagnosed Multiple Myeloma Patients. Cancers (Basel) 2022; 14:2228. [PMID: 35565356 PMCID: PMC9104534 DOI: 10.3390/cancers14092228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
The molecular mechanisms underlying chemoresistance in some newly diagnosed multiple myeloma (MM) patients receiving standard therapies (lenalidomide, bortezomib, and dexamethasone) are poorly understood. Identifying clinically relevant gene networks associated with death due to MM may uncover novel mechanisms, drug targets, and prognostic biomarkers to improve the treatment of the disease. This study used data from the MMRF CoMMpass RNA-seq dataset (N = 270) for weighted gene co-expression network analysis (WGCNA), which identified 21 modules of co-expressed genes. Genes differentially expressed in patients with poor outcomes were assessed using two independent sample t-tests (dead and alive MM patients). The clinical performance of biomarker candidates was evaluated using overall survival via a log-rank Kaplan-Meier and ROC test. Four distinct modules (M10, M13, M15, and M20) were significantly correlated with MM vital status and differentially expressed between the dead (poor outcomes) and the alive MM patients within two years. The biological functions of modules positively correlated with death (M10, M13, and M20) were G-protein coupled receptor protein, cell-cell adhesion, cell cycle regulation genes, and cellular membrane fusion genes. In contrast, a negatively correlated module to MM mortality (M15) was the regulation of B-cell activation and lymphocyte differentiation. MM biomarkers CTAG2, MAGEA6, CCND2, NEK2, and E2F2 were co-expressed in positively correlated modules to MM vital status, which was associated with MM's lower overall survival.
Collapse
Affiliation(s)
- Olayinka O. Adebayo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (O.O.A.); (C.D.D.); (T.L.G.); (S.J.); (R.S.)
| | - Eric B. Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Courtney D. Dill
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (O.O.A.); (C.D.D.); (T.L.G.); (S.J.); (R.S.)
| | | | - Saheed O. Oseni
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ti’ara L. Griffen
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (O.O.A.); (C.D.D.); (T.L.G.); (S.J.); (R.S.)
| | | | - Fengxia Yan
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Sanjay Jain
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (O.O.A.); (C.D.D.); (T.L.G.); (S.J.); (R.S.)
| | - Benjamin G. Barwick
- Winship Cancer Institute, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (B.G.B.); (L.H.B.)
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (O.O.A.); (C.D.D.); (T.L.G.); (S.J.); (R.S.)
| | - Lawrence H. Boise
- Winship Cancer Institute, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (B.G.B.); (L.H.B.)
| | - James W. Lillard, Jr.
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (O.O.A.); (C.D.D.); (T.L.G.); (S.J.); (R.S.)
| |
Collapse
|
19
|
Zhang Z, Zhao T, Xu H, Wu X. Circ_0008365 Suppresses Apoptosis, Inflammation and Extracellular Matrix Degradation of IL-1β-treated Chondrocytes in Osteoarthritis by Regulating miR-324-5p/BMPR2/NF-κB Signaling Axis. Immunol Invest 2022; 51:1598-1611. [PMID: 35172669 DOI: 10.1080/08820139.2021.2001496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent studies have revealed that circular RNAs (circRNAs) play crucial roles in the progression of osteoarthritis (OA). This study aimed to investigate the biological function and regulatory mechanism of circ_0008365 in OA. METHODS OA cell model in vitro was established in chondrocytes by treatment with Interleukin-1β (IL-1β). The levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The expression levels of circ_0008365, microRNA-324-5p (miR-324-5p) and bone morphogenetic protein type 2 receptor (BMPR2) were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was assessed using flow cytometry and caspase3 activity assays. The protein expression was determined via a western blot assay. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to analyze the correlation between targets. RESULTS IL-1β level and miR-324-5p expression were increased, while circ_0008365 was downregulated in OA patients. IL-1β treatment-induced cell apoptosis, inflammation and extracellular matrix (ECM) degradation in chondrocytes. Besides, circ_0008365 overexpression partly relieved IL-1β-induced cell damage in chondrocytes. Circ_0008365 could interact with miR-324-5p, and BMPR2 was a downstream target of miR-324-5p. Overexpression of miR-324-5p or BMPR2 knockdown partly overturned the inhibiting effect of circ_0008365 on cell damage in IL-1β-induced chondrocytes. In addition, circ_0008365 inactivated NF-κB pathway via regulating miR-324-5p/BMPR2 axis. CONCLUSION Circ_0008365 reduced IL-1β-induced cell damage in chondrocytes via inactivating NF-κB signaling pathway and regulating miR-324-5p/BMPR2 axis.Abbreviations OA: osteoarthritis; BMPR2: bone morphogenetic protein type 2 receptor.
Collapse
Affiliation(s)
- Zilong Zhang
- Department of Spine, Zaozhuang Municipal Hospital, Zaozhuang City, China
| | - Teng Zhao
- Department of Orthopedics, Zaozhuang Hospital, Zaozhuang Mining Group, Jining City, China
| | - Haiwei Xu
- Department of Orthopedics, Zaozhuang Hospital, Zaozhuang Mining Group, Jining City, China
| | - Xing Wu
- Department of Orthopedics, Tennan Hospital, Zaozhuang Mining Group, Jining City, China
| |
Collapse
|
20
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. Circulating non-coding RNAs as a diagnostic and management biomarker for breast cancer: current insights. Mol Biol Rep 2022; 49:705-715. [PMID: 34677714 DOI: 10.1007/s11033-021-06847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer biomarkers can be used to determine the molecular status of a tumor or its metastases, which either release them directly into body fluids or indirectly through disruption of tumor/metastatic tissue. New minimally invasive and repeatable sample collection methods, such as liquid biopsy, have been developed in the last decade to apply cancer knowledge and track its progression. Circulating non-coding RNAs, which include microRNAs, long non-coding RNAs, and PIWI-interacting RNAs, are increasingly being recognized as potential cancer biomarkers. The growing understanding of cancer's molecular pathogenesis, combined with the rapid development of new molecular techniques, encourages the study of early molecular alterations associated with cancer development in body fluids. Specific genetic and epigenetic changes in circulating free RNA (cf-RNA) in plasma, serum, and urine could be used as diagnostic biomarkers for a variety of cancers. Only a subset of these cf-RNAs have been studied in breast cancer, with the most extensive research focusing on cf-miRNA in plasma. These findings pave the way for immediate use of selected cf-RNAs as biomarkers in breast cancer liquid biopsy, as well as additional research into other cf-RNAs to advance.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, 41376, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne, Rue Du Bugnon 7, 1005, Lausanne, Switzerland.
| |
Collapse
|
21
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A Review on the Role of AFAP1-AS1 in the Pathoetiology of Cancer. Front Oncol 2021; 11:777849. [PMID: 34912717 PMCID: PMC8666534 DOI: 10.3389/fonc.2021.777849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
AFAP1-AS1 is a long non-coding RNA which partakes in the pathoetiology of several cancers. The sense protein coding gene from this locus partakes in the regulation of cytophagy, cell motility, invasive characteristics of cells and metastatic ability. In addition to acting in concert with AFAP1, AFAP1-AS1 can sequester a number of cancer-related miRNAs, thus affecting activity of signaling pathways involved in cancer progression. Most of animal studies have confirmed that AFAP1-AS1 silencing can reduce tumor volume and invasive behavior of tumor cells in the xenograft models. Moreover, statistical analyses in the human subjects have shown strong correlation between expression levels of this lncRNA and clinical outcomes. In the present work, we review the impact of AFAP1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
The curcumin analog EF24 inhibits proliferation and invasion of triple-negative breast cancer cells by targeting the lncRNA HCG11/Sp1 axis. Mol Cell Biol 2021; 42:e0016321. [PMID: 34780286 DOI: 10.1128/mcb.00163-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EF24, a curcumin analog, exerts a potent anti-tumor effect on various cancers. However, whether EF24 retards the progression of triple-negative breast cancer (TNBC) remains unclear. In this study, we explored the role of EF24 in TNBC and clarified the underlying mechanism. In a mouse model of TNBC xenograft, EF24 administration reduced the tumor volume, suppressed cell proliferation, promoted cell apoptosis, and downregulated long non-coding RNA human leukocyte antigen complex group 11 (HCG11) expression. In TNBC cell lines, EF24 administration reduced cell viability, suppressed cell invasion, and downregulated HCG11 expression. HCG11 overexpression re-enhanced the proliferation and invasion of TNBC cell lines suppressed by EF24. The following mechanism research revealed that HCG11 overexpression elevated Sp1 transcription factor (Sp1) expression by reducing its ubiquitination, thereby enhanced Sp1-mediated cell survival and invasion in the TNBC cell line. Finally, the in vivo study showed that HCG11-overexpressed TNBC xenografts exhibited lower responsiveness in response to EF24 treatment. In conclusion, EF24 treatment reduced HCG11 expression, resulting in the degradation of Sp1 expression, thereby inhibiting the proliferation and invasion of TNBC cells.
Collapse
|
23
|
Li T, Liu D, Li C, Ru L, Wang X. Silencing of LncRNA AFAP1-AS1 Inhibits Cell Proliferation in Oral Squamous Cancer by Suppressing CCNA2. Cancer Manag Res 2021; 13:7897-7908. [PMID: 34703311 PMCID: PMC8526521 DOI: 10.2147/cmar.s328737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 12/09/2022] Open
Abstract
Background Evidence has indicated that dysregulation of long noncoding RNAs (lncRNA) is a critical factor in the occurrence of many diseases, including cancer. The lncRNA AFAP1-AS1 has been shown to participate in oncogenesis, metastasis, or drug resistance in many types of cancer. However, the potential role of AFAP1-AS1 in oral squamous cell carcinoma (OSCC) has not been fully elucidated. Methods Bioinformatics analysis was performed to compare AFAP1-AS1 expression levels in OSCC cancer samples and in normal controls. The biological function of AFAP1-AS1 was studied through loss-of-function assays. To study the potential mechanisms, high-throughput sequencing was applied to OSCC cancer samples and a series of bioinformatics analyses were performed. The effects of AFAP1-AS1 on OSCC tumor growth was evaluated by in vivo xenograft tumor formation assays. Results Bioinformatics analyses indicated that AFAP1-AS1 was upregulated in OSCC. Overexpression of AFAP1-AS1 was positively correlated with lymph node metastasis, tumor stage, and pathological grade. Down-regulation of AFAP1-AS1 in OSCC led to decreased proliferation in vitro and, notably, inhibition of tumor growth in vivo. Further research indicated that AFAP1-AS1 regulated OSCC cell proliferation by targeting CCNA2. Conclusion AFAP1-AS1 promotes tumor proliferation and indicates a poor prognosis in OSCC, providing a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Chenglong Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Lu Ru
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Xuixia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| |
Collapse
|
24
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
25
|
Wu J, Xu W, Ma L, Sheng J, Ye M, Chen H, Zhang Y, Wang B, Liao M, Meng T, Zhou Y, Chen H. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging (Albany NY) 2021; 13:18191-18222. [PMID: 34289449 PMCID: PMC8351708 DOI: 10.18632/aging.203156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Abstract
This investigation attempted to discern whether formononetin restrained progression of triple-negative breast cancer (TNBC) by blocking lncRNA AFAP1-AS1-miR-195/miR-545 axis. We prepared TNBC cell lines (i.e. MDA-MB-231 and BT-549) and normal human mammary epithelial cell line (i.e. MCF-10A) in advance, and the TNBC cell lines were, respectively, transfected by pcDNA3.1-lncRNA AFAP1-AS1, si-lncRNA AFAP1-AS1, pcDNA6.2/GW/EmGFP-miR-545 or pcDNA6.2/GW/EmGFP-miR-195. Resistance of TNBC cells in response to 5-Fu, adriamycin, paclitaxel and cisplatin was evaluated through MTT assay, while potentials of TNBC cells in proliferation, migration and invasion were assessed via CCK8 assay and Transwell assay. Consequently, silencing of lncRNA AFAP1-AS1 impaired chemo-resistance, proliferation, migration and invasion of TNBC cells (P<0.05), and over-expression of miR-195 and miR-545, which were sponged and down-regulated by lncRNA AFAP1-AS1 (P<0.05), significantly reversed the promoting effect of pcDNA3.1-lncRNA AFAP1-AS1 on proliferation, migration, invasion and chemo-resistance of TNBC cells (P<0.05). Furthermore, CDK4 and Raf-1, essential biomarkers of TNBC progression, were, respectively, subjected to target and down-regulation of miR-545 and miR-195 (P<0.05), and they were promoted by pcDNA3.1-lncRNA AFAP1-AS1 at protein and mRNA levels (P<0.05). Additionally, formononetin significantly decreased expressions of lncRNA AFAP1-AS1, CDK4 and Raf-1, while raised miR-195 and miR-545 expressions in TNBC cells (P<0.05), and exposure to it dramatically contained malignant behaviors of TNBC cells (P<0.05). In conclusion, formononetin alleviated TNBC malignancy by suppressing lncRNA AFAP1-AS1-miR-195/miR-545 axis, suggesting that molecular targets combined with traditional Chinese medicine could yield significant clinical benefits in TNBC.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lina Ma
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Jiayu Sheng
- Department of Breast Surgery, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Meina Ye
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hao Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yuzhu Zhang
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bing Wang
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Mingjuan Liao
- Department of Traditional Chinese Medicine, The Ninth People's Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Tian Meng
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yue Zhou
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Hongfeng Chen
- Department of Breast, Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| |
Collapse
|
26
|
Zhou Y, Yue Y, Fan S, Jia Q, Ding X. Advances in Pathophysiology of Triple-Negative Breast Cancer: The Potential of lncRNAs for Clinical Diagnosis, Treatment, and Prognostic Monitoring. Mol Biotechnol 2021; 63:1093-1102. [PMID: 34245439 DOI: 10.1007/s12033-021-00368-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that long non-coding RNAs (lncRNAs) are involved in several gene expression regulation processes, including epigenetic regulation, transcriptional regulation, post-transcriptional regulation, and translation regulation. It also plays a crucial role in the regulation of several characteristics of cancer biology, and the dysregulation of lncRNA expression in cancer may be part of the cause of cancer progression. Meanwhile, more and more studies are trying to determine the association between lncRNA expression and TNBC, as well as the functional role and molecular mechanism of the abnormally expressed lncRNA. Therefore, this review lists some abnormal lncRNAs in TNBC, further analyzes their molecular mechanisms and biological roles in the development of TNBC, and summarizes the potential of lncRNAs as biomarkers and therapeutic targets of TNBC, so as to provide ideas for clinical diagnosis, targeted therapy, and prognosis monitoring of TNBC.
Collapse
Affiliation(s)
- Yangkun Zhou
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yang Yue
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Siyu Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiaojun Jia
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
27
|
Zhang S, Zou Y, Tang X, Zhang Y, Yang N, Xu K, Xu Y. Silencing of AFAP1-AS1 lncRNA impairs cell proliferation and migration by epigenetically promoting DUSP5 expression in pre-eclampsia. J Cell Biochem 2021; 122:1506-1516. [PMID: 34192359 DOI: 10.1002/jcb.30072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/02/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
As a unique and common obstetric complication of pregnant women, pre-eclampsia (PE) has been the first leading cause of maternal and perinatal morbidity and mortality in the world. Mounting studies have demonstrated that an abnormality of long noncoding RNA (lncRNA) expression was related to the pathological process of PE. Here, we showed that lncRNA AFAP1-AS1 was markedly downregulated in pre-eclamptic placentas. We further investigated the mechanism underlying the regulatory role of AFAP1-AS1 in PE using human trophoblast cells. In vitro functional assays revealed that AFAP1-AS1 knockdown inhibited trophoblast proliferation, migration, and invasion. Moreover, AFAP1-AS1 interacts with EZH2 and inhibits DUSP5 expression through modulating H3K27m3 in the DUSP5 promoter of trophoblast cells, thus being involved in PE pathogenesis. Overall, these findings suggest that AFAP1-AS1 could potentially become a prognostic biomarker as well as a new therapeutic target for PE.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Critical Care Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Yanfen Zou
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Xiaotong Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nana Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Zhang X, Li F, Zhou Y, Mao F, Lin Y, Shen S, Li Y, Zhang S, Sun Q. Long noncoding RNA AFAP1-AS1 promotes tumor progression and invasion by regulating the miR-2110/Sp1 axis in triple-negative breast cancer. Cell Death Dis 2021; 12:627. [PMID: 34145213 PMCID: PMC8213778 DOI: 10.1038/s41419-021-03917-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Long noncoding ribonucleic acids (LncRNAs) have been found to be involved in the proliferation, apoptosis, invasion, migration, and other pathological processes of triple-negative breast cancer (TNBC). Expression of the lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) has been found to be significantly higher in TNBC than in other subtypes or in normal tissue samples, but the specific mechanism by which AFAP1-AS1 affects the occurrence and development of TNBC is yet to be revealed. In this study, we used Cell Counting Kit-8 (CCK-8), colony formation, wound healing migration, Transwell invasion, and nude mouse xenograft assays to confirm the role of AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. In addition, we performed bioinformatics analyses, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and dual-luciferase reporter assays (dual-LRA) to confirm interaction among AFAP1-AS1, micro-RNA 2110 (miR-2110), and Sp1 transcription factor (Sp1). We found that silencing AFAP1-AS1 and Sp1 or upregulating miR-2110 suppressed the proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-LRA highlighted that miR-2110 was an inhibitory target of AFAP1-AS1, and that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reversed by joint transfection with miR-2110 inhibitor. Our findings demonstrated that AFAP1-AS1 could modulate the progression of breast cancer cells and affect tumorigenesis in mice by acting as a miR-2110 sponge, resulting in regulation of Sp1 expression. Therefore, AFAP1-AS1 could play a pivotal role in the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fangyuan Li
- Medical Science Research Centre, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yuntao Li
- No.1 department of surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sheng Zhang
- 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| |
Collapse
|
29
|
Thakur KK, Kumar A, Banik K, Verma E, Khatoon E, Harsha C, Sethi G, Gupta SC, Kunnumakkara AB. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis. J Cell Physiol 2021; 236:7938-7965. [PMID: 34105151 DOI: 10.1002/jcp.30463] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.
Collapse
Affiliation(s)
- Krishan K Thakur
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elina Khatoon
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Choudhary Harsha
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Subash C Gupta
- Department of Biochemistry, Laboratory for Translational Cancer Research, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
30
|
Liu R, Deng P, Zhang Y, Wang Y, Peng C. Circ_0082182 promotes oncogenesis and metastasis of colorectal cancer in vitro and in vivo by sponging miR-411 and miR-1205 to activate the Wnt/β-catenin pathway. World J Surg Oncol 2021; 19:51. [PMID: 33596920 PMCID: PMC7891146 DOI: 10.1186/s12957-021-02164-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of endogenous single-strand RNA transcripts with crucial regulation in human cancers. The objective of this study is to investigate the role of circ_0082182 in CRC and its specific functional mechanism. METHODS The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the levels of circ_0082182, microRNA-411 (miR-411) and microRNA-1205 (miR-1205). Cell proliferation was detected by Cell counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used for determining cell cycle and cell apoptosis. Cell apoptosis was also assessed by caspase3 and caspase9 activities. Cell migration and invasion were examined using scratch assay and transwell assay. The interaction between circ_0082182 and miRNA was validated by the dual-luciferase reporter and biotinylated RNA pull-down assays. Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by Western blot. Xenograft model was established for the research of circ_0082182 in vivo. RESULTS Circ_0082182 was upregulated in CRC and could predict the poor prognosis of CRC patients. Functionally, circ_0082182 promoted CRC cell proliferation, cell cycle progression, and metastasis while inhibited apoptosis. Subsequently, circ_0082182 was shown to act as the sponges of miR-411 and miR-1205. MiR-411 and miR-1205 were identified as tumor inhibitors in CRC. Furthermore, circ_0082182 promoted the CRC progression via sponging miR-411 and miR-1205. Moreover, circ_0082182 facilitated the Wnt/β-catenin pathway and EMT process by targeting miR-411 and miR-1205. In vivo, circ_0082182 accelerated the CRC tumorigenesis and EMT process by activating the Wnt/β-catenin pathway by downregulating the expression of miR-411 or miR-1205. CONCLUSION This study showed that circ_0082182 functioned as an oncogene in the developing process of CRC by sponging miR-411 or miR-1205 to activate the Wnt/β-catenin pathway. Circ_0082182 might be a molecular target in the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of General Surgery, Jingmen No.1 People's Hospital, Jingmen, 448000, Hubei, China
| | - Ping Deng
- Department of Anorectal Surgery, Jingmen No.1 People's Hospital, No.167, Xiangshan Avenue, Dadao District, Jingmen, 448000, Hubei, China
| | - Yonglian Zhang
- Department of Anorectal Surgery, Jingmen No.1 People's Hospital, No.167, Xiangshan Avenue, Dadao District, Jingmen, 448000, Hubei, China
| | - Yonglan Wang
- Department of Digestive Endoscopy Center, Jingmen No.1 People's Hospital, Jingmen, 448000, Hubei, China
| | - Cuiping Peng
- Department of Anorectal Surgery, Jingmen No.1 People's Hospital, No.167, Xiangshan Avenue, Dadao District, Jingmen, 448000, Hubei, China.
| |
Collapse
|
31
|
Zhi L, Liang J, Huang W, Ma J, Qing Z, Wang X. Circ_AFF2 facilitates proliferation and inflammatory response of fibroblast-like synoviocytes in rheumatoid arthritis via the miR-375/TAB2 axis. Exp Mol Pathol 2021; 119:104617. [PMID: 33535081 DOI: 10.1016/j.yexmp.2021.104617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) have been implicated in the pathological regulation of human diseases by acting as microRNA (miRNA) sponges to affect gene expression. CircRNA Fragile Mental Retardation 2 (circ_AFF2) was dysregulated in rheumatoid arthritis (RA), but little is known about its specific function and hidden molecular mechanism in RA. Circ_AFF2, miR-375 and TAK1-binding 2 (TAB2) expression levels were determined through the quantitative real-time polymerase chain reaction (qRT-PCR). Flow cytometry was performed to analyze cell cycle and apoptosis. Cell proliferation detection was conducted by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The protein levels were measured using western blot. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). RNA pull-down assay was used to select the miRNA target of circ_AFF2. The interaction between miR-375 and circ_AFF2 or TAB2 was analyzed using the dual-luciferase reporter assay. Contrasted to normal samples and fibroblast-like synoviocytes (FLS), circ_AFF2 expression was upregulated in RA blood samples and FLS-RA cells. Cell cycle, proliferation and inflammatory response were blocked while apoptosis was promoted in FLS-RA after the downregulation of circ_AFF2. In addition, circ_AFF2 could interact with miR-375 and the function of circ_AFF2 was achieved by sponging miR-375 in FLS-RA cells. Moreover, TAB2 was a target of miR-375 and miR-375 repressed RA progression by decreasing TAB2 expression in FLS-RA cells. More importantly, circ_AFF2 promoted the expression of TAB2 by targeting miR-375. These findings clarified that circ_AFF2 induced cell progression, inflammatory response in FLS-RA cells via the miR-375/TAB2 axis. Circ_AFF2 could be used as a biomarker in the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Liqiang Zhi
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Huang
- Department of Orthopaedics Trauma, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhong Qing
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xi Wang
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
32
|
Du W, Lei C, Wang Y, Ding Y, Tian P. LINC01232 Sponges Multiple miRNAs and Its Clinical Significance in Pancreatic Adenocarcinoma Diagnosis and Prognosis. Technol Cancer Res Treat 2021; 20:1533033820988525. [PMID: 33506742 PMCID: PMC7871353 DOI: 10.1177/1533033820988525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Long noncoding RNAs have been demonstrated to play important roles in
different kinds of human malignancy. The purpose of this study was to
evaluate the diagnostic and prognostic value of long intergenic non-protein
coding RNA 1232 (LINC01232) in patients with pancreatic adenocarcinoma
(PAAD) and further explore the clinical significance of the potential miRNAs
that might be sponged by LINC01232. Methods: The potential target miRNAs that might be sponged by LINC01232 were analyzed
using bioinformatics analysis. The Real-Time quantitative PCR was adopted to
measure the relative expression of LINC01232 and target miRNAs in PAAD serum
and tissue samples. The diagnostic and prognostic value of LINC01232 was
evaluated using the receiver operating characteristic analysis and
Kaplan-Meier survival analysis, respectively. Results: LINC01232 expression was upregulated in PAAD serum and tissues and associated
with patients’ TNM stage. Serum LINC01232 expression had diagnostic value,
and the high levels of LINC01232 could predict unfavorable prognosis in PAAD
patients. miR-204-5p, miR-370-5p and miR-654-3p were proposed as 3 targets
of LINC01232 in PAAD, and their decreased expression levels in PAAD patients
showed certain clinical significance in diagnosis and prognosis. Conclusion: The data of this study revealed that LINC01232 expression is upregulated in
PAAD serum and tissue samples with considerable diagnostic and prognostic
significance. In addition, miR-204-5p, miR-370-5p and miR-654-3p may be
sponged by LINC01232 in PAAD, which also show potencies in PAAD diagnosis
and prognosis.
Collapse
Affiliation(s)
- Wenyan Du
- Department of Science and Education, 117906Zibo Central Hospital, Zibo, Shandong, China
| | - Chengbin Lei
- Department of Clinical Laboratory, 42259Zibo Central Hospital, Zibo, Shandong, China
| | - Yanzhen Wang
- Department of Ultrasonic, 42259Zibo Central Hospital, Zibo, Shandong, China
| | - Yiwen Ding
- Department of Ultrasonic, 42259Zibo Central Hospital, Zibo, Shandong, China
| | - Peng Tian
- Department of Ultrasonic, 42259Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
33
|
Xu H, Miao J, Liu S, Liu H, Zhang L, Zhang Q. Long non-coding RNA KCNQ1 overlapping transcript 1 promotes the progression of esophageal squamous cell carcinoma by adsorbing microRNA-133b. Clinics (Sao Paulo) 2021; 76:e2175. [PMID: 33909822 PMCID: PMC8050598 DOI: 10.6061/clinics/2021/e2175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) exerts vital regulatory functions in diverse tumors. However, the biological function of KCNQ1OT1 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS KCNQ1OT1 expression was detected in ESCC tissues using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were detected by the CCK-8 assay, EdU assay, flow cytometry analysis, and Transwell experiments, respectively. Bioinformatics analysis, luciferase reporter experiments, and RNA immunoprecipitation assays were used to predict and validate the regulatory relationships between KCNQ1OT1, microRNA-133b (miR-133b) and epidermal growth factor receptor (EGFR). RESULTS KCNQ1OT1 expression was remarkably upregulated in ESCC tissues and cell lines. Overexpression of KCNQ1OT1 markedly promoted ESCC cell proliferation, migration, and invasion and enhanced the expression of N-cadherin, MMP-2, and MMP-9, but inhibited apoptosis and E-cadherin expression in ESCC cell lines; KCNQ1OT1 knockdown exerted the opposite effects. KCNQ1OT1 could directly bind to miR-133b and suppress its expression, and miR-133b reversed the effects of KCNQ1OT1 overexpression in ESCC cells. MiR-133b reduced the expression of epidermal growth factor receptor (EGFR); further, KCNQ1OT1 activated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT) signaling pathway by repressing miR-133b repression and indirectly upregulating EGFR. KCNQ1OT1 expression was positively correlated with EGFR mRNA expression and negatively correlated with miR-133b expression. CONCLUSION KCNQ1OT1 facilitates ESCC progression by sponging miR-133b and activating the EGFR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Miao
- Department of Pediatrics, Binzhou People’s Hospital, Binzhou, Shandong 256603, China
| | - Shuai Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Hongjian Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
- *Corresponding author. E-mail:
| |
Collapse
|
34
|
Gao H, Sun Y, Chen J, Jin H, Yang W. Long non-coding RNA AFAP1-AS1 promotes cell growth and inhibits apoptosis by binding to specific proteins in germinal center B-cell-like diffuse large B-cell lymphoma. Am J Transl Res 2020; 12:8225-8246. [PMID: 33437395 PMCID: PMC7791486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common subtype of lymphoma in adults. Previously, we found that actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) is among the most overexpressed lncRNAs in GCB-DLBCL. In this study, we explored its biological functions and molecular mechanisms in the progression of GCB-DLBCL. We discovered, via bioinformatics, that patients with a high expression of AFAP1-AS1 had significantly poor disease-free survival (DFS) and overall survival (OS). Subsequent assays demonstrated that AFAP1-AS1 knockdown inhibited cell proliferation and prompted arrest of the G0/G1 cell cycle and apoptosis in GCB-DLBCL cell lines. Proteomics analysis indicated that hundreds of proteins were deregulated after AFAP1-AS1 knockdown and KEGG pathway analysis revealed that the deregulated proteins belonged to multiple signaling pathways, such as "B-cell receptor signaling pathway". Moreover, in the comprehensive identification of proteins that bind to RNA (by ChIRP-MS), several proteins associated with RNA splicing were identified (e.g., SFPQ, NONO, SRSF2, SRSF6, and KHSRP) that could specifically bind to AFAP1-AS1, which was confirmed by parallel reaction monitoring assay (PRM). Conclusively, we demonstrated that AFAP1-AS1 is a possible prognostic marker of poor outcomes in GCB-DLBCL patients and could modulate gene expression through connecting to specific proteins to practice its oncogenic role in GCB-DLBCL.
Collapse
Affiliation(s)
- Hongyu Gao
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Ying Sun
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Jiawen Chen
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Hong Jin
- Department of Pathogen Biology, China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| |
Collapse
|
35
|
Ibrahim AM, Said MM, Hilal AM, Medhat AM, Abd Elsalam IM. Candidate circulating microRNAs as potential diagnostic and predictive biomarkers for the monitoring of locally advanced breast cancer patients. Tumour Biol 2020; 42:1010428320963811. [PMID: 33028151 DOI: 10.1177/1010428320963811] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed at investigating the expression of candidate microRNAs (miRs), at initial diagnosis, during neoadjuvant chemotherapy, and after the tumor resection in locally advanced breast cancer patients. Plasma samples were collected from locally advanced breast cancer patients (n = 30) and healthy subjects (n = 20) for the detection of candidate miRs' expression using the real-time quantitative polymerase chain reaction. At initial locally advanced breast cancer diagnosis, the expression of miR-21, miR-181a, and miR-10b was significantly increased, whereas that of miR-145 and let-7a was significantly decreased, compared to the healthy individuals. The diagnostic accuracy of miR-21 was superior to both carcinoembryonic antigen and carcinoma antigen 15-3 as diagnostic biomarkers for locally advanced breast cancer. By the end of the treatment, the expression of altered miRs rebound to control values. The expression levels of candidate plasma miRs are useful diagnostic biomarkers, as well as monitoring a proper response for locally advanced breast cancer patients to the treatment. Furthermore, miR-10b and miR-21 can be considered as predictive biomarkers for progression-free survival.
Collapse
Affiliation(s)
- Alaa M Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud M Said
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amany M Hilal
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amina M Medhat
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ibrahim M Abd Elsalam
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol 2020; 72:46-64. [PMID: 32497683 DOI: 10.1016/j.semcancer.2020.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation. Aberrant regulation of gene expression by miRNAs is frequently observed in cancer. Overexpression of various 'oncomiRs' and silencing of tumor suppressor miRNAs are associated with various types of human cancers, although overall downregulation of miRNA expression is reported as a hallmark of cancer. Modulations of the total pool of cellular miRNA by alteration in genetic and epigenetic factors associated with the biogenesis of miRNA machinery. It also depends on the availability of cellular miRNAs from its store in the organelles which affect tumor development and cancer progression. Here, we have dissected the roles and pathways of various miRNAs during normal cellular and molecular functions as well as during breast cancer progression. Recent research works and prevailing views implicate that there are two major types of miRNAs; (i) intracellular miRNAs and (ii) extracellular miRNAs. Concept, that the functions of intracellular miRNAs are driven by cellular organelles in mammalian cells. Extracellular miRNAs function in cell-cell communication in extracellular spaces and distance cells through circulation. A detailed understanding of organelle driven miRNA function and the precise role of extracellular miRNAs, pre- and post-therapeutic implications of miRNAs in this scenario would open several avenues for further understanding of miRNA function and can be better exploited for the treatment of breast cancers.
Collapse
|