1
|
Li E, Boujeddaine N, Houtman MJC, Maas RGC, Sluijter JPG, Ecker GF, Stary-Weinzinger A, van Ham WB, van der Heyden MAG. Development of new K ir2.1 channel openers from propafenone analogues. Br J Pharmacol 2025; 182:633-650. [PMID: 39419581 DOI: 10.1111/bph.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSES Reduced inward rectifier potassium channel (Kir2.1) functioning is associated with heart failure and may cause Andersen-Tawil Syndrome, among others characterized by ventricular arrhythmias. Most heart failure or Andersen-Tawil Syndrome patients are treated with β-adrenoceptor antagonists (β-blockers) or sodium channel blockers; however, these do not specifically address the inward rectifier current (IK1) nor aim to improve resting membrane potential stability. Consequently, additional pharmacotherapy for heart failure and Andersen-Tawil Syndrome treatment would be highly desirable. Acute propafenone treatment at low concentrations enhances IK1 current, but it also exerts many off-target effects. Therefore, discovering and exploring new IK1-channel openers is necessary. EXPERIMENTAL APPROACH Effects of propafenone and 10 additional propafenone analogues were analysed. Currents were measured by single-cell patch-clamp electrophysiology. Kir2.1 protein expression levels were determined by western blot analysis and action potential characteristics were further validated in human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMCs). Molecular docking was performed to obtain detailed information on drug-channel interactions. KEY RESULTS Analogues GPV0019, GPV0057 and GPV0576 strongly increased the outward component of IK1 while not affecting the Kir2.1 channel expression levels. GPV0057 did not block IKr at concentrations below 0.5 μmol L-1 nor NaV1.5 current below 1 μmol L-1. Moreover, hiPSC-CMC action potential duration was also not affected by GPV0057 at 0.5 and 1 μmol L-1. Structure analysis indicates a mechanism by which GPV0057 might enhance Kir2.1 channel activation. CONCLUSION AND IMPLICATIONS GPV0057 has a strong efficiency towards increasing IK1, which makes it a good candidate to address IK1 deficiency-associated diseases.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Najla Boujeddaine
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Willem B van Ham
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
S Gomes AA, Costa MGS, Louet M, Floquet N, Bisch PM, Perahia D. Extended Sampling of Macromolecular Conformations from Uniformly Distributed Points on Multidimensional Normal Mode Hyperspheres. J Chem Theory Comput 2024; 20:10770-10786. [PMID: 39663763 DOI: 10.1021/acs.jctc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed "distributed points Molecular Dynamics using Normal Modes" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.
Collapse
Affiliation(s)
- Antoniel A S Gomes
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Maxime Louet
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Nicolas Floquet
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
| |
Collapse
|
3
|
Cruz FM, Macías Á, Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Martínez-Carrascoso I, Pérez PS, Robles JMR, Bermúdez-Jiménez FJ, Díaz-Agustín A, de Benito FM, Arias-Santiago S, Braza-Boils A, Martín-Martínez M, Gutierrez-Rodríguez M, Bernal JA, Zorio E, Jiménez-Jaimez J, Jalife J. Extracellular Kir2.1 C122Y Mutant Upsets Kir2.1-PIP 2 Bonds and Is Arrhythmogenic in Andersen-Tawil Syndrome. Circ Res 2024; 134:e52-e71. [PMID: 38497220 PMCID: PMC11009053 DOI: 10.1161/circresaha.123.323895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.
Collapse
Affiliation(s)
- Francisco M. Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | - Lilian K. Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Francisco J Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitor Díaz-Agustín
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Fernando Martínez de Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Salvador Arias-Santiago
- Servicio de Dermatología Hospital Universitario Virgen de las Nieves
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitana Braza-Boils
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Marta Gutierrez-Rodríguez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Juan A. Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Esther Zorio
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Jiménez-Jaimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Cruz FM, Macías Á, Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Martínez-Carrascoso I, Pérez PS, Robles JMR, Bermúdez-Jiménez FJ, Díaz-Agustín A, de Benito FM, Santiago SA, Braza-Boils A, Martín-Martínez M, Gutierrez-Rodríguez M, Bernal JA, Zorio E, Jiménez-Jaimez J, Jalife J. Extracellular cysteine disulfide bond break at Cys122 disrupts PIP 2-dependent Kir2.1 channel function and leads to arrhythmias in Andersen-Tawil Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544151. [PMID: 37333254 PMCID: PMC10274791 DOI: 10.1101/2023.06.07.544151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Andersen-Tawil Syndrome Type 1 (ATS1) is a rare heritable disease caused by mutations in the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys122-to-Cys154 disulfide bond in the Kir2.1 channel structure is crucial for proper folding, but has not been associated with correct channel function at the membrane. We tested whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing the open state of the channel. Methods and Results We identified a Kir2.1 loss-of-function mutation in Cys122 (c.366 A>T; p.Cys122Tyr) in a family with ATS1. To study the consequences of this mutation on Kir2.1 function we generated a cardiac specific mouse model expressing the Kir2.1C122Y mutation. Kir2.1C122Y animals recapitulated the abnormal ECG features of ATS1, like QT prolongation, conduction defects, and increased arrhythmia susceptibility. Kir2.1C122Y mouse cardiomyocytes showed significantly reduced inward rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking ability and localization at the sarcolemma and the sarcoplasmic reticulum. Kir2.1C122Y formed heterotetramers with wildtype (WT) subunits. However, molecular dynamic modeling predicted that the Cys122-to-Cys154 disulfide-bond break induced by the C122Y mutation provoked a conformational change over the 2000 ns simulation, characterized by larger loss of the hydrogen bonds between Kir2.1 and phosphatidylinositol-4,5-bisphosphate (PIP2) than WT. Therefore, consistent with the inability of Kir2.1C122Y channels to bind directly to PIP2 in bioluminescence resonance energy transfer experiments, the PIP2 binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch-clamping the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing PIP2 concentrations. Conclusion The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential to channel function. We demonstrated that ATS1 mutations that break disulfide bonds in the extracellular domain disrupt PIP2-dependent regulation, leading to channel dysfunction and life-threatening arrhythmias.
Collapse
Affiliation(s)
- Francisco M. Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | - Lilian K. Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Francisco J Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitor Díaz-Agustín
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Fernando Martínez de Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Salvador Arias Santiago
- Servicio de Dermatología Hospital Universitario Virgen de las Nieves
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitana Braza-Boils
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Marta Gutierrez-Rodríguez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Juan A. Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Esther Zorio
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Jiménez-Jaimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Costa MGS, Batista PR, Gomes A, Bastos LS, Louet M, Floquet N, Bisch PM, Perahia D. MDexciteR: Enhanced Sampling Molecular Dynamics by Excited Normal Modes or Principal Components Obtained from Experiments. J Chem Theory Comput 2023; 19:412-425. [PMID: 36622950 DOI: 10.1021/acs.jctc.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular dynamics with excited normal modes (MDeNM) is an enhanced sampling method for exploring conformational changes in proteins with minimal biases. The excitation corresponds to injecting kinetic energy along normal modes describing intrinsic collective motions. Herein, we developed a new automated open-source implementation, MDexciteR (https://github.com/mcosta27/MDexciteR), enabling the integration of MDeNM with two commonly used simulation programs with GPU support. Second, we generalized the method to include the excitation of principal components calculated from experimental ensembles. Finally, we evaluated whether the use of coarse-grained normal modes calculated with elastic network representations preserved the performance and accuracy of the method. The advantages and limitations of these new approaches are discussed based on results obtained for three different protein test cases: two globular and a protein/membrane system.
Collapse
Affiliation(s)
- Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190Gif-sur-Yvette, France
| | - Paulo R Batista
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
| | - Antoniel Gomes
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brasil
| | - Leonardo S Bastos
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Av. Brasil 4365, Residência Oficial, Manguinhos, 21040-900Rio de Janeiro, Brasil
| | - Maxime Louet
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex 0534095, France
| | - Nicolas Floquet
- Institut des Biomolecules Max Mousseron, UMR5247, CNRS, Université De Montpellier, ENSCM, 1919 Route de Mende, Montpellier, Cedex 0534095, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brasil
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, 4 Avenue des Sciences, 91190Gif-sur-Yvette, France
| |
Collapse
|
6
|
Fernandes CAH, Zuniga D, Fagnen C, Kugler V, Scala R, Péhau-Arnaudet G, Wagner R, Perahia D, Bendahhou S, Vénien-Bryan C. Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel. SCIENCE ADVANCES 2022; 8:eabq8489. [PMID: 36149965 PMCID: PMC9506730 DOI: 10.1126/sciadv.abq8489] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.1 channels are strongly inward-rectifying potassium channels that play a key role in maintaining resting membrane potential. Their gating is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Genetically inherited defects in Kir2.1 channels are responsible for several rare human diseases, including Andersen's syndrome. The structural analysis (cryo-electron microscopy), surface plasmon resonance, and electrophysiological experiments revealed a well-connected network of interactions between the PIP2-binding site and the G-loop through residues R312 and H221. In addition, molecular dynamics simulations and normal mode analysis showed the intrinsic tendency of the CTD to tether to the TMD and a movement of the secondary anionic binding site to the membrane even without PIP2. Our results revealed structural features unique to human Kir2.1 and provided insights into the connection between G-loop and gating and the pathological mechanisms associated with this channel.
Collapse
Affiliation(s)
- Carlos A. H. Fernandes
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| | - Dania Zuniga
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| | - Charline Fagnen
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| | - Valérie Kugler
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS–University of Strasbourg, Illkirch, Cedex, France
| | - Rosa Scala
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, Université Côte d’Azur, Nice, France
| | - Gérard Péhau-Arnaudet
- Ultrastructural BioImaging Core Facility/UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS–University of Strasbourg, Illkirch, Cedex, France
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France
| | - Saïd Bendahhou
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, Université Côte d’Azur, Nice, France
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d’Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
7
|
Kaynak BT, Krieger JM, Dudas B, Dahmani ZL, Costa MGS, Balog E, Scott AL, Doruker P, Perahia D, Bahar I. Sampling of Protein Conformational Space Using Hybrid Simulations: A Critical Assessment of Recent Methods. Front Mol Biosci 2022; 9:832847. [PMID: 35187088 PMCID: PMC8855042 DOI: 10.3389/fmolb.2022.832847] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Recent years have seen several hybrid simulation methods for exploring the conformational space of proteins and their complexes or assemblies. These methods often combine fast analytical approaches with computationally expensive full atomic molecular dynamics (MD) simulations with the goal of rapidly sampling large and cooperative conformational changes at full atomic resolution. We present here a systematic comparison of the utility and limits of four such hybrid methods that have been introduced in recent years: MD with excited normal modes (MDeNM), collective modes-driven MD (CoMD), and elastic network model (ENM)-based generation, clustering, and relaxation of conformations (ClustENM) as well as its updated version integrated with MD simulations (ClustENMD). We analyzed the predicted conformational spaces using each of these four hybrid methods, applied to four well-studied proteins, triosephosphate isomerase (TIM), 3-phosphoglycerate kinase (PGK), HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT), which provide extensive ensembles of experimental structures for benchmarking and comparing the methods. We show that a rigorous multi-faceted comparison and multiple metrics are necessary to properly assess the differences between conformational ensembles and provide an optimal protocol for achieving good agreement with experimental data. While all four hybrid methods perform well in general, being especially useful as computationally efficient methods that retain atomic resolution, the systematic analysis of the same systems by these four hybrid methods highlights the strengths and limitations of the methods and provides guidance for parameters and protocols to be adopted in future studies.
Collapse
Affiliation(s)
- Burak T. Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - James M. Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Balint Dudas
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zakaria L. Dahmani
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mauricio G. S. Costa
- Programa de Computação Científica, Vice-Presiden̂cia de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ana Ligia Scott
- Laboratory of Bioinformatics and Computational Biology, Center of Mathematics, Computation and Cognition, Federal University of ABC-UFABC, Santo André, Brazil
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Ivet Bahar, ; David Perahia, ; Pemra Doruker,
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Ivet Bahar, ; David Perahia, ; Pemra Doruker,
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Ivet Bahar, ; David Perahia, ; Pemra Doruker,
| |
Collapse
|
8
|
Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, Vénien-Bryan C. Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain. Int J Mol Sci 2021; 23:335. [PMID: 35008764 PMCID: PMC8745282 DOI: 10.3390/ijms23010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.
Collapse
Affiliation(s)
- Charline Fagnen
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France;
| | - Ludovic Bannwarth
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Iman Oubella
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Dania Zuniga
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Ahmed Haouz
- Institut Pasteur, C2RT-Plate-Forme de Cristallographie CNRS-UMR3528, 75724 Paris, France;
| | - Eric Forest
- CNRS, IBS, CEA, University Grenoble Alpes, 38044 Grenoble, France;
| | - Rosa Scala
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, University Côte d’Azur, 06560 Nice, France; (R.S.); (S.B.)
| | - Saïd Bendahhou
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, University Côte d’Azur, 06560 Nice, France; (R.S.); (S.B.)
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgeri 1, 34127 Trieste, Italy;
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France;
| | - Catherine Vénien-Bryan
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| |
Collapse
|
9
|
Dudas B, Toth D, Perahia D, Nicot AB, Balog E, Miteva MA. Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations. Sci Rep 2021; 11:13129. [PMID: 34162941 PMCID: PMC8222352 DOI: 10.1038/s41598-021-92480-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022] Open
Abstract
Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control the capability of SULT to bind large substrates. We employed molecular dynamics (MD) simulations and the recently developed approach of MD with excited normal modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on binding of the substrates estradiol and fulvestrant demonstrated that large conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-factor movements that could be sufficient to accommodate large substrates as fulvestrant. Such structural displacements detected by the MDeNM simulations in the presence of the co-factor suggest that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the utility of including MDeNM in protein–ligand interactions studies where major rearrangements are expected.
Collapse
Affiliation(s)
- Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS - University of Paris, Pharmacy Faculty of Paris, Paris, France.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, UMR 8113, CNRS, Gif-sur-Yvette, France
| | - Daniel Toth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, UMR 8113, CNRS, Gif-sur-Yvette, France
| | - Arnaud B Nicot
- Inserm, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000, Nantes, France
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| | - Maria A Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS - University of Paris, Pharmacy Faculty of Paris, Paris, France.
| |
Collapse
|
10
|
Fagnen C, Bannwarth L, Zuniga D, Oubella I, De Zorzi R, Forest E, Scala R, Guilbault S, Bendahhou S, Perahia D, Vénien-Bryan C. Unexpected Gating Behaviour of an Engineered Potassium Channel Kir. Front Mol Biosci 2021; 8:691901. [PMID: 34179097 PMCID: PMC8222812 DOI: 10.3389/fmolb.2021.691901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the dynamics and functional characteristics of the KirBac3.1 S129R, a mutated bacterial potassium channel for which the inner pore-lining helix (TM2) was engineered so that the bundle crossing is trapped in an open conformation. The structure of this channel has been previously determined at high atomic resolution. We explored the dynamical characteristics of this open state channel using an in silico method MDeNM that combines molecular dynamics simulations and normal modes. We captured the global and local motions at the mutation level and compared these data with HDX-MS experiments. MDeNM provided also an estimation of the probability of the different opening states that are in agreement with our electrophysiological experiments. In the S129R mutant, the Arg129 mutation releases the two constriction points in the channel that existed in the wild type but interestingly creates another restriction point.
Collapse
Affiliation(s)
- Charline Fagnen
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Ludovic Bannwarth
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Dania Zuniga
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Iman Oubella
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eric Forest
- IBS University Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Rosa Scala
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Samuel Guilbault
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Saïd Bendahhou
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Revealing the activation mechanism of autoinhibited RalF by integrated simulation and experimental approaches. Sci Rep 2021; 11:10059. [PMID: 33980916 PMCID: PMC8115643 DOI: 10.1038/s41598-021-89169-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
RalF is an Arf GEF from Legionella pneumophilia, the bacterium that causes severe pneumonia. In its crystal structure, RalF is in the autoinhibited form. A large-scale domain motion is expected to lift the autoinhibition, the mechanism of which is still unknown. Since RalF is activated in the presence of the membrane, its active structure and the structure of the RalF-Arf1 complex could not have been determined experimentally. On the simulation side, it has been proven that classical Molecular Dynamics (MD) alone is not efficient enough to map motions of such amplitude and determine the active conformation of RalF. In this article, using Molecular Dynamics with excited Normal Modes (MDeNM) combined with previous experimental findings we were able to determine the active RalF structure and the structure of the RalF-Arf1 complex in the presence of the membrane, bridging the gap between experiments and simulation.
Collapse
|
12
|
Yang D, Wan X, Dennis AT, Bektik E, Wang Z, Costa MG, Fagnen C, Vénien-Bryan C, Xu X, Gratz DH, Hund TJ, Mohler PJ, Laurita KR, Deschênes I, Fu JD. MicroRNA Biophysically Modulates Cardiac Action Potential by Direct Binding to Ion Channel. Circulation 2021; 143:1597-1613. [PMID: 33590773 PMCID: PMC8132313 DOI: 10.1161/circulationaha.120.050098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoping Wan
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Adrienne T. Dennis
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Emre Bektik
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Zhihua Wang
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Mauricio G.S. Costa
- Institute of Mineralogy, Materials Physics and Cosmochemistry, UMR 7590, Sorbonne Université, CNRS, MNHN, Paris F-75005, France
- Oswaldo Cruz Foundation, Scientific Computing Program, Vice Presidency of Education, Information and Communication, Rio de Janeiro, Brazil
| | - Charline Fagnen
- Institute of Mineralogy, Materials Physics and Cosmochemistry, UMR 7590, Sorbonne Université, CNRS, MNHN, Paris F-75005, France
| | - Catherine Vénien-Bryan
- Institute of Mineralogy, Materials Physics and Cosmochemistry, UMR 7590, Sorbonne Université, CNRS, MNHN, Paris F-75005, France
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Departments of Biomedical Engineering and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel H. Gratz
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Departments of Biomedical Engineering and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Departments of Biomedical Engineering and Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth R. Laurita
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH 44109, USA
| |
Collapse
|
13
|
Rosário-Ferreira N, Marques-Pereira C, Gouveia RP, Mourão J, Moreira IS. Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View. Methods Mol Biol 2021; 2315:3-28. [PMID: 34302667 DOI: 10.1007/978-1-0716-1468-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs' structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Catarina Marques-Pereira
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Raquel P Gouveia
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|