1
|
Añorve-Garibay V, Huerta-Sanchez E, Sohail M, Ortega-Del Vecchyo D. Natural selection acting on complex traits hampers the predictive accuracy of polygenic scores in ancient samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612181. [PMID: 39314439 PMCID: PMC11419050 DOI: 10.1101/2024.09.10.612181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The prediction of phenotypes from ancient humans has gained interest due to its potential to investigate the evolution of complex traits. These predictions are commonly performed using polygenic scores computed with DNA information from ancient humans along with genome-wide association studies (GWAS) data from present-day humans. However, numerous evolutionary processes could impact the prediction of phenotypes from ancient humans based on polygenic scores. In this work we investigate how natural selection impacts phenotypic predictions on ancient individuals using polygenic scores. We use simulations of an additive trait to analyze how natural selection impacts phenotypic predictions with polygenic scores. We simulate a trait evolving under neutrality, stabilizing selection and directional selection. We find that stabilizing and directional selection have contrasting effects on ancient phenotypic predictions. Stabilizing selection accelerates the loss of large-effect alleles contributing to trait variation. Conversely, directional selection accelerates the loss of small and large-effect alleles that drive individuals farther away from the optimal phenotypic value. These effects result in specific shared genetic variation patterns between ancient and modern populations which hamper the accuracy of polygenic scores to predict phenotypes. Furthermore, we conducted simulations that include realistic strengths of stabilizing selection and heritability estimates to show how natural selection could impact the predictive accuracy of ancient polygenic scores for two widely studied traits: height and body mass index. We emphasize the importance of considering how natural selection can decrease the reliability of ancient polygenic scores to perform phenotypic predictions on an ancient population.
Collapse
Affiliation(s)
- Valeria Añorve-Garibay
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, México
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA
| | - Mashaal Sohail
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, México
| |
Collapse
|
2
|
González-Peñas J, de Hoyos L, Díaz-Caneja CM, Andreu-Bernabeu Á, Stella C, Gurriarán X, Fañanás L, Bobes J, González-Pinto A, Crespo-Facorro B, Martorell L, Vilella E, Muntané G, Molto MD, Gonzalez-Piqueras JC, Parellada M, Arango C, Costas J. Recent natural selection conferred protection against schizophrenia by non-antagonistic pleiotropy. Sci Rep 2023; 13:15500. [PMID: 37726359 PMCID: PMC10509162 DOI: 10.1038/s41598-023-42578-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder associated with a reduced fertility and decreased life expectancy, yet common predisposing variation substantially contributes to the onset of the disorder, which poses an evolutionary paradox. Previous research has suggested balanced selection, a mechanism by which schizophrenia risk alleles could also provide advantages under certain environments, as a reliable explanation. However, recent studies have shown strong evidence against a positive selection of predisposing loci. Furthermore, evolutionary pressures on schizophrenia risk alleles could have changed throughout human history as new environments emerged. Here in this study, we used 1000 Genomes Project data to explore the relationship between schizophrenia predisposing loci and recent natural selection (RNS) signatures after the human diaspora out of Africa around 100,000 years ago on a genome-wide scale. We found evidence for significant enrichment of RNS markers in derived alleles arisen during human evolution conferring protection to schizophrenia. Moreover, both partitioned heritability and gene set enrichment analyses of mapped genes from schizophrenia predisposing loci subject to RNS revealed a lower involvement in brain and neuronal related functions compared to those not subject to RNS. Taken together, our results suggest non-antagonistic pleiotropy as a likely mechanism behind RNS that could explain the persistence of schizophrenia common predisposing variation in human populations due to its association to other non-psychiatric phenotypes.
Collapse
Affiliation(s)
- Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain.
| | - Lucía de Hoyos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Carol Stella
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Xaquín Gurriarán
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lourdes Fañanás
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Julio Bobes
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Faculty of Medicine and Health Sciences - Psychiatry, Universidad de Oviedo, ISPA, INEUROPA, Oviedo, Spain
| | - Ana González-Pinto
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- BIOARABA Health Research Institute, OSI Araba, University Hospital, University of the Basque Country, Vitoria, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Department of Psychiatry, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Lourdes Martorell
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira I Virgili, Reus, Spain
| | - Elisabet Vilella
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira I Virgili, Reus, Spain
| | - Gerard Muntané
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira I Virgili, Reus, Spain
| | - María Dolores Molto
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Department of Genetics, University of Valencia, Campus of Burjassot, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Jose Carlos Gonzalez-Piqueras
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Calle Ibiza, 43, 28009, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| |
Collapse
|
3
|
Ferrando-Bernal M. Ancient DNA suggests anaemia and low bone mineral density as the cause for porotic hyperostosis in ancient individuals. Sci Rep 2023; 13:6968. [PMID: 37117261 PMCID: PMC10147686 DOI: 10.1038/s41598-023-33405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Porotic hyperostosis (PH) is a disease that had high prevalence during the Neolithic. Several hypotheses have been suggested to explain the origin of the disease, such as an iron deficiency diet, low B12 intake, malaria caused by Plasmodium spp., low haemoglobin levels or low vitamin D levels. None of these hypotheses have been tested genetically. Here, I calculated different genetic scores to test each hypothesis. Additionally, I calculated a genetic score of bone mineral density as it is a phenotype that seems to be selected in ancient Europeans. I apply these genetic scores on 80 ancient samples, 33 with diagnosed PH. The results seem to suggest anaemia and low bone mineral density as the main cause for this disease. Additionally, Neolithic individuals show the lowest genetic risk score for bone mineral density of all other periods tested here, which may explain the highest prevalence of the porotic hyperostosis during this age.
Collapse
|
4
|
Heslin KP, Haruna A, George RA, Chen S, Nobel I, Anderson KB, Faraone SV, Zhang-James Y. Association Between ADHD and COVID-19 Infection and Clinical Outcomes: A Retrospective Cohort Study From Electronic Medical Records. J Atten Disord 2023; 27:169-181. [PMID: 36264064 PMCID: PMC9596686 DOI: 10.1177/10870547221129305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Though psychiatric illnesses have been associated with increased COVID-19 infection risk, limited information exists about the relationship between ADHD and COVID-19. METHODS Using the TriNetX COVID-19 Research Network, we examined the impact of ADHD diagnosis and treatment on COVID-19 infection rates and outcomes. RESULTS ADHD patients had greater risk of COVID-19 (risk ratio (RR) 1.11, 95% CI [1.09, 1.12]). Increased risk was higher in females than males, and highest among Asian and Black patients. Within 60 days after COVID-19 diagnosis, ADHD patients had lower rates of hospitalization (RR 0.91, 95% CI [0.86, 0.96]) and mechanical ventilation (RR 0.69, 95% CI [0.58, 0.83]), and a nonsignificant reduced death rate (RR 0.65, 95% CI [0.42, 1.02]). Patients who recently received ADHD medication had higher rates of COVID-19 (RR 1.13; 95% CI [1.10, 1.15]). CONCLUSION ADHD poses increased risk for COVID-19, but may reduce risk of severe outcomes. ADHD medications modestly impacted COVID-19 risk.
Collapse
Affiliation(s)
- Kathleen P. Heslin
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Aminat Haruna
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Regina A. George
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Shiyu Chen
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ishak Nobel
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kathryn B. Anderson
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Stephen V. Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Yanli Zhang-James
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
5
|
Cabrera Lagunes A, Díaz-Anzaldúa A, Rojas Andrade G, Peschard VG, Arias Caballero A, Gaspar-Barba CE, Yunes Jimenez A, De la Peña Olvera FR, Cruz Fuentes CS, Feria-Aranda M, Sosa Mora L, Pérez Molina A, Guizar Sanchez D, Palacios-Cruz L. Association between CLOCK gene polymorphisms and ADHD in Mexican teenagers: A comprehensive assessment. Psychiatry Res 2022; 317:114835. [PMID: 36166946 PMCID: PMC10824139 DOI: 10.1016/j.psychres.2022.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023]
Abstract
This study aimed to evaluate markers of the CLOCK gene rs1801260 and rs4864548 in Mexican adolescents, addressing clinical and biological aspects previously associated with ADHD. 347 Mexican adolescents were assessed for mental disorders, metabolic disruption and related conditions, circadian preference, as well as genotyping for the CLOCK. We found a significant association between ADHD and the AA and AG genotypes of rs1801260. Also, we identified in the ADHD group that the total Triiodothyronine and total Thyroxine values were respectively 10 ng/dl units and 0.58 ug/dl units lower in females than in males. Previously reported common variations of the CLOCK gene have been associated with ADHD like the Rs1801260 polymorphism hereby we could consider it as risk factor, but genetic, biochemical and clinical studies in the Mexican population are entailed.
Collapse
Affiliation(s)
- Alfonso Cabrera Lagunes
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Adriana Díaz-Anzaldúa
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Gustavo Rojas Andrade
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Vanessa-Giselle Peschard
- Department of Medicine, Division of Nephrology, University of California, San Francisco 941130, United States
| | - Adriana Arias Caballero
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - César Enrique Gaspar-Barba
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Arlette Yunes Jimenez
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Eating Disorders Clinic, Instituto Prado S.C., Mexico City 11000, Mexico
| | - Francisco Rafael De la Peña Olvera
- Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Unit of Research Promotion, Direction of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlos Sabas Cruz Fuentes
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Miriam Feria-Aranda
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Liz Sosa Mora
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Armando Pérez Molina
- Department of Genetics, Sub-division of Clinical Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Diana Guizar Sanchez
- Department of Physiology, Laboratory of Learning Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Lino Palacios-Cruz
- Comprehensive Wellbeing Program, Adolescent Clinic, Division of Clinical Services, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; Department of Clinical Epidemiology, Sub-division of Clinical Research, Division of Neurosciences, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico.
| |
Collapse
|
6
|
Zug R, Uller T. Evolution and dysfunction of human cognitive and social traits: A transcriptional regulation perspective. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e43. [PMID: 37588924 PMCID: PMC10426018 DOI: 10.1017/ehs.2022.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022] Open
Abstract
Evolutionary changes in brain and craniofacial development have endowed humans with unique cognitive and social skills, but also predisposed us to debilitating disorders in which these traits are disrupted. What are the developmental genetic underpinnings that connect the adaptive evolution of our cognition and sociality with the persistence of mental disorders with severe negative fitness effects? We argue that loss of function of genes involved in transcriptional regulation represents a crucial link between the evolution and dysfunction of human cognitive and social traits. The argument is based on the haploinsufficiency of many transcriptional regulator genes, which makes them particularly sensitive to loss-of-function mutations. We discuss how human brain and craniofacial traits evolved through partial loss of function (i.e. reduced expression) of these genes, a perspective compatible with the idea of human self-domestication. Moreover, we explain why selection against loss-of-function variants supports the view that mutation-selection-drift, rather than balancing selection, underlies the persistence of psychiatric disorders. Finally, we discuss testable predictions.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Theofanopoulou C, Andirkó A, Boeckx C, Jarvis ED. Oxytocin and vasotocin receptor variation and the evolution of human prosociality. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100139. [PMID: 35757177 PMCID: PMC9227999 DOI: 10.1016/j.cpnec.2022.100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022] Open
Abstract
Modern human lifestyle strongly depends on complex social traits like empathy, tolerance and cooperation. These diverse facets of social cognition have been associated with variation in the oxytocin receptor (OTR) and its sister genes, the vasotocin/vasopressin receptors (VTR1A/AVPR1A and AVPR1B/VTR1B). Here, we compared the available genomic sequences of these receptors between modern humans, archaic humans, and 12 non-human primate species, and identified sites that show heterozygous variation in modern humans and archaic humans distinct from variation in other primates, and for which we could find association studies with clinical implications. On these sites, we performed a range of analyses (variant clustering, pathogenicity prediction, regulation, linkage disequilibrium frequency), and reviewed the literature on selection data in different modern-human populations. We found five sites with modern human specific variation, where the modern human allele is the major allele in the global population (OTR: rs1042778, rs237885, rs6770632; VTR1A: rs10877969; VTR1B: rs33985287). Among them, variation in the OTR-rs6770632 site was predicted to be the most functional. Two alleles (OTR: rs59190448 and rs237888) present only in modern humans and archaic humans were putatively under positive selection in modern humans, with rs237888 predicted to be a highly functional site. Three sites showed convergent evolution between modern humans and bonobos (OTR: rs2228485 and rs237897; VTR1A: rs1042615), with OTR-rs2228485 ranking highly in terms of functionality and reported to be under balancing selection in modern humans (Schaschl, 2015) [1]. Our findings have implications for understanding hominid prosociality, as well as the similarities between modern human and bonobo social behavior.
Collapse
Affiliation(s)
| | - Alejandro Andirkó
- Section of General Linguistics, Universitat de Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, USA
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, USA
- ICREA, Spain
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Yair S, Coop G. Population differentiation of polygenic score predictions under stabilizing selection. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200416. [PMID: 35430887 PMCID: PMC9014188 DOI: 10.1098/rstb.2020.0416] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Given the many small-effect loci uncovered by genome-wide association studies (GWAS), polygenic scores have become central to genomic medicine, and have found application in diverse settings including evolutionary studies of adaptation. Despite their promise, polygenic scores have been found to suffer from limited portability across human populations. This at first seems in conflict with the observation that most common genetic variation is shared among populations. We investigate one potential cause of this discrepancy: stabilizing selection on complex traits. Counterintuitively, while stabilizing selection constrains phenotypic evolution, it accelerates the loss and fixation of alleles underlying trait variation within populations (GWAS loci). Thus even when populations share an optimum phenotype, stabilizing selection erodes the variance contributed by their shared GWAS loci, such that predictions from GWAS in one population explain less of the phenotypic variation in another. We develop theory to quantify how stabilizing selection is expected to reduce the prediction accuracy of polygenic scores in populations not represented in GWAS samples. In addition, we find that polygenic scores can substantially overstate average genetic differences of phenotypes among populations. We emphasize stabilizing selection around a common optimum as a useful null model to connect patterns of allele frequency and polygenic score differentiation. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Graham Coop
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Loh HW, Ooi CP, Barua PD, Palmer EE, Molinari F, Acharya UR. Automated detection of ADHD: Current trends and future perspective. Comput Biol Med 2022; 146:105525. [DOI: 10.1016/j.compbiomed.2022.105525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
|
10
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
A selection pressure landscape for 870 human polygenic traits. Nat Hum Behav 2021; 5:1731-1743. [PMID: 34782732 DOI: 10.1038/s41562-021-01231-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
Characterizing the natural selection of complex traits is important for understanding human evolution and both biological and pathological mechanisms. We leveraged genome-wide summary statistics for 870 polygenic traits and attempted to quantify signals of selection on traits of different forms in European ancestry across four periods in human history and evolution. We found that 88% of these traits underwent polygenic change in the past 2,000-3,000 years. Recent selection was associated with ancient selection signals in the same trait. Traits related to pigmentation, body measurement and nutritional intake exhibited strong selection signals across different time scales. Our findings are limited by our use of exclusively European data and the use of genome-wide association study data, which identify associations between genetic variants and phenotypes that may not be causal. In sum, we provide an overview of signals of selection on human polygenic traits and their characteristics across human evolution, based on a European subset of human genetic diversity. These findings could serve as a foundation for further populational and medical genetic studies.
Collapse
|
12
|
McGaugh SE, Lorenz AJ, Flagel LE. The utility of genomic prediction models in evolutionary genetics. Proc Biol Sci 2021; 288:20210693. [PMID: 34344180 PMCID: PMC8334854 DOI: 10.1098/rspb.2021.0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Variation in complex traits is the result of contributions from many loci of small effect. Based on this principle, genomic prediction methods are used to make predictions of breeding value for an individual using genome-wide molecular markers. In breeding, genomic prediction models have been used in plant and animal breeding for almost two decades to increase rates of genetic improvement and reduce the length of artificial selection experiments. However, evolutionary genomics studies have been slow to incorporate this technique to select individuals for breeding in a conservation context or to learn more about the genetic architecture of traits, the genetic value of missing individuals or microevolution of breeding values. Here, we outline the utility of genomic prediction and provide an overview of the methodology. We highlight opportunities to apply genomic prediction in evolutionary genetics of wild populations and the best practices when using these methods on field-collected phenotypes.
Collapse
Affiliation(s)
- Suzanne E. McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Aaron J. Lorenz
- Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Lex E. Flagel
- Plant and Microbial Biology, University of Minnesota, 140 Gortner Lab, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
- Bayer Crop Science, 700 W Chesterfield Parkway, Chesterfield, MO 63017, USA
| |
Collapse
|
13
|
Harikumar A, Evans DW, Dougherty CC, Carpenter KL, Michael AM. A Review of the Default Mode Network in Autism Spectrum Disorders and Attention Deficit Hyperactivity Disorder. Brain Connect 2021; 11:253-263. [PMID: 33403915 PMCID: PMC8112713 DOI: 10.1089/brain.2020.0865] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to examine the relationships between brain function and phenotypic features in neurodevelopmental disorders. Techniques such as resting-state functional connectivity (FC) have enabled the identification of the primary networks of the brain. One fMRI network, in particular, the default mode network (DMN), has been implicated in social-cognitive deficits in autism spectrum disorders (ASD) and attentional deficits in attention deficit hyperactivity disorder (ADHD). Given the significant clinical and genetic overlap between ASD and ADHD, surprisingly, no reviews have compared the clinical, developmental, and genetic correlates of DMN in ASD and ADHD and here we address this knowledge gap. We find that, compared with matched controls, ASD studies show a mixed pattern of both stronger and weaker FC in the DMN and ADHD studies mostly show stronger FC. Factors such as age, intelligence quotient, medication status, and heredity affect DMN FC in both ASD and ADHD. We also note that most DMN studies make ASD versus ADHD group comparisons and fail to consider ASD+ADHD comorbidity. We conclude, by identifying areas for improvement and by discussing the importance of using transdiagnostic approaches such as the Research Domain Criteria (RDoC) to fully account for the phenotypic and genotypic heterogeneity and overlap of ASD and ADHD.
Collapse
Affiliation(s)
- Amritha Harikumar
- Department of Psychiatry, Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Address correspondence to: Amritha Harikumar, Department of Psychological Sciences, Rice University, 6566 Main St, BRC 780B, Houston, TX 77030, USA
| | - David W. Evans
- Department of Psychology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Chase C. Dougherty
- Department of Psychiatry, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kimberly L.H. Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Andrew M. Michael
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|