1
|
Tsibidis GD, Stratakis E. Influence of antireflection Si coatings on the damage threshold of fused silica upon irradiation with mid-IR femtosecond laser pulses. OPTICS LETTERS 2023; 48:4841-4844. [PMID: 37707917 DOI: 10.1364/ol.501168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
Recent progress in the development of high-power mid-IR laser sources and the exciting laser driven physical phenomena associated with the irradiation of solids via ultrashort laser pulses in that spectral region are aimed to potentially create novel capabilities for material processing. In particular, the investigation of the underlying physical processes and the evaluation of the optical breakdown threshold (OBT) following irradiation of bulk dielectric materials with mid-IR femtosecond (fs) pulses have been recently presented. In this Letter, we will explore the conditions that generate sufficient carrier excitation levels which lead to damage upon irradiation of a dielectric material (SiO2) coated with antireflection (AR) semiconducting films (Si) of variable thickness with fs pulses. Simulation results demonstrate that the reflectivity and transmissivity of the Si/SiO2 are thickness dependent which can be employed to modulate the damage threshold of the substrate. The study is to provide innovative routes for selecting material sizes that can be used for antireflection coatings and applications in the mid-IR region.
Collapse
|
2
|
Navickas M, Grigutis R, Jukna V, Tamošauskas G, Dubietis A. Low spatial frequency laser-induced periodic surface structures in fused silica inscribed by widely tunable femtosecond laser pulses. Sci Rep 2022; 12:20231. [PMID: 36418435 PMCID: PMC9684477 DOI: 10.1038/s41598-022-24771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The formation and evolution of laser-induced periodic surface structures in fused silica under irradiation of widely tunable (in the 1-3 [Formula: see text]m range) linearly polarized femtosecond (200 fs) pulses was studied experimentally. The structures were inscribed in high fluence regime (exceeding the surface ablation threshold for a single pulse) and characterized by using scanning electron microscopy and two dimensional Fourier transform. The results revealed rapid (after irradiation with a few successive pulses) formation of periodic laser-induced periodic surface structures aligned parallel to laser polarization, whose period increases with increasing the inscription wavelength, obeying the [Formula: see text] law. With further increase of number of pulses, the generated structures gradually reorganize into laser polarization-independent low spatial frequency annular structures associated with formation of the damage crater, which fully established after irradiation with a few tens of successive laser pulses. This particular evolution scenario was observed over the entire wavelength tuning range of incident pulses.
Collapse
Affiliation(s)
- Marius Navickas
- grid.6441.70000 0001 2243 2806Laser Research Center, Vilnius University, Saulėtekio Avenue 10, 10223 Vilnius, Lithuania
| | - Robertas Grigutis
- grid.6441.70000 0001 2243 2806Laser Research Center, Vilnius University, Saulėtekio Avenue 10, 10223 Vilnius, Lithuania
| | - Vytautas Jukna
- grid.6441.70000 0001 2243 2806Laser Research Center, Vilnius University, Saulėtekio Avenue 10, 10223 Vilnius, Lithuania
| | - Gintaras Tamošauskas
- grid.6441.70000 0001 2243 2806Laser Research Center, Vilnius University, Saulėtekio Avenue 10, 10223 Vilnius, Lithuania
| | - Audrius Dubietis
- grid.6441.70000 0001 2243 2806Laser Research Center, Vilnius University, Saulėtekio Avenue 10, 10223 Vilnius, Lithuania
| |
Collapse
|
3
|
Tsaturyan A, Kachan E, Stoian R, Colombier JP. Ultrafast bandgap narrowing and cohesion loss of photoexcited fused silica. J Chem Phys 2022; 156:224301. [PMID: 35705413 DOI: 10.1063/5.0096530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coupling and spatial localization of energy on ultrafast timescales and particularly on the timescale of the excitation pulse in ultrashort laser irradiated dielectric materials are key elements for enabling processing precision beyond the optical limit. Transforming matter on mesoscopic scales facilitates the definition of nanoscale photonic functions in optical glasses. On these timescales, quantum interactions induced by charge non-equilibrium become the main channel for energy uptake and transfer as well as for the material structural change. We apply a first-principles model to determine dynamic distortions of energy bands following the rapid increase in the free-carrier population in an amorphous dielectric excited by an ultrashort laser pulse. Fused silica glass is reproduced using a system of (SiO4)4- tetrahedra, where density functional theory extended to finite-temperature fractional occupation reproduces ground and photoexcited states. Triggered by electronic charge redistribution, a bandgap narrowing of more than 2 eV is shown to occur in fused silica under geometry relaxation. Calculations reveal that the bandgap decrease results from the rearrangement of atoms altering the bonding strength. Despite an atomic movement impacting strongly the structural stability, the observed change of geometry remains limited to 7% of the interatomic distance and occurs on the femtosecond timescale. This structural relaxation is thus expected to take place quasi-instantly following the photon energy flux. Moreover, under intense laser pulse excitation, fused silica loses its stability when an electron temperature of around 2.8 eV is reached. A further increase in the excitation energy leads to the collapse of both the structure and bandgap.
Collapse
Affiliation(s)
- Arshak Tsaturyan
- University Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023, St-Etienne, France
| | - Elena Kachan
- University Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023, St-Etienne, France
| | - Razvan Stoian
- University Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023, St-Etienne, France
| | - Jean-Philippe Colombier
- University Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516, F-42023, St-Etienne, France
| |
Collapse
|
4
|
Maragkaki S, Lingos PC, Tsibidis GD, Deligeorgis G, Stratakis E. Impact of Pre-Patterned Structures on Features of Laser-Induced Periodic Surface Structures. Molecules 2021; 26:7330. [PMID: 34885913 PMCID: PMC8658884 DOI: 10.3390/molecules26237330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The efficiency of light coupling to surface plasmon polariton (SPP) represents a very important issue in plasmonics and laser fabrication of topographies in various solids. To illustrate the role of pre-patterned surfaces and impact of laser polarisation in the excitation of electromagnetic modes and periodic pattern formation, Nickel surfaces are irradiated with femtosecond laser pulses of polarisation perpendicular or parallel to the orientation of the pre-pattern ridges. Experimental results indicate that for polarisation parallel to the ridges, laser induced periodic surface structures (LIPSS) are formed perpendicularly to the pre-pattern with a frequency that is independent of the distance between the ridges and periodicities close to the wavelength of the excited SPP. By contrast, for polarisation perpendicular to the pre-pattern, the periodicities of the LIPSS are closely correlated to the distance between the ridges for pre-pattern distance larger than the laser wavelength. The experimental observations are interpreted through a multi-scale physical model in which the impact of the interference of the electromagnetic modes is revealed.
Collapse
Affiliation(s)
- Stella Maragkaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Crete, Greece; (P.C.L.); (G.D.T.); (G.D.)
| | - Panagiotis C. Lingos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Crete, Greece; (P.C.L.); (G.D.T.); (G.D.)
| | - George D. Tsibidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Crete, Greece; (P.C.L.); (G.D.T.); (G.D.)
- Department of Physics, University of Crete, 71003 Heraklion, Crete, Greece
| | - George Deligeorgis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Crete, Greece; (P.C.L.); (G.D.T.); (G.D.)
- Department of Physics, University of Crete, 71003 Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, 71110 Heraklion, Crete, Greece; (P.C.L.); (G.D.T.); (G.D.)
- Department of Physics, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
5
|
Femtosecond Laser-Induced Periodic Surface Structures on 2D Ti-Fe Multilayer Condensates. NANOMATERIALS 2021; 11:nano11020316. [PMID: 33513705 PMCID: PMC7911909 DOI: 10.3390/nano11020316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022]
Abstract
2D Ti-Fe multilayer preparation has been attracting increased interest due to its ability to form intermetallic compounds between metallic titanium and metallic iron thin layers. In particular, the TiFe compound can absorb hydrogen gas at room temperature. We applied femtosecond laser pulses to heat Ti-Fe multilayer structures to promote the appearance of intermetallic compounds and generate surface nanostructuring. The surface pattern, known as Laser Induced Periodic Surface Structures (LIPSS), can accelerate the kinetics of chemical interaction between solid TiFe and gaseous hydrogen. The formation of LIPSS on Ti-Fe multilayered thin films were investigated using of scanning electron microscopy, photo-electron spectroscopy and X-ray diffraction. To explore the thermal response of the multiple layered structure and the mechanisms leading to surface patterning after irradiating the compound with single laser pulses, theoretical simulations were conducted to interpret the experimental observations.
Collapse
|
6
|
The Role of Crystalline Orientation in the Formation of Surface Patterns on Solids Irradiated with Femtosecond Laser Double Pulses. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A theoretical investigation of the underlying ultrafast processes upon irradiation of rutile TiO2 of (001) and (100) surface orientation with femtosecond (fs) double pulsed lasers was performed in ablation conditions, for which, apart from mass removal, phase transformation and surface modification of the heated solid were induced. A parametric study was followed to correlate the transient carrier density and the produced lattice temperature with the laser fluence, pulse separation and the induced damage. The simulations showed that both temporal separation and crystal orientation influence the surface pattern, while both the carrier density and temperature drop gradually to a minimum value at temporal separation equal to twice the pulse separation that remain constant at long delays. Carrier dynamics, interference of the laser beam with the excited surface waves, thermal response and fluid transport at various pulse delays explained the formation of either subwavelength or suprawavelength structures. The significant role of the crystalline anisotropy is illustrated through the presentation of representative experimental results correlated with the theoretical predictions.
Collapse
|