1
|
Heiduschka S, Prigione A. iPSC models of mitochondrial diseases. Neurobiol Dis 2025; 207:106822. [PMID: 39892770 DOI: 10.1016/j.nbd.2025.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Mitochondrial diseases are historically difficult to study. They cause multi-systemic defects with prevalent impairment of hard-to-access tissues such as the brain and the heart. Furthermore, they suffer from a paucity of conventional model systems, especially because of the challenges associated with mitochondrial DNA (mtDNA) engineering. Consequently, most mitochondrial diseases are currently untreatable. Human induced pluripotent stem cells (iPSCs) represent a promising approach for developing human model systems and assessing therapeutic avenues in a patient- and tissue-specific context. iPSCs are being increasingly used to investigate mitochondrial diseases, either for dissecting mutation-specific defects within two-dimensional (2D) or three-dimensional (3D) progenies or for unveiling the impact of potential treatment options. Here, we review how iPSC-derived 2D cells and 3D organoid models have been applied to the study of mitochondrial diseases caused by either nuclear or mtDNA defects. We anticipate that the field of iPSC-driven modeling of mitochondrial diseases will continue to grow, likely leading to the development of innovative platforms for treatment discovery and toxicity that could benefit the patient community suffering from these debilitating disorders with highly unmet medical needs.
Collapse
Affiliation(s)
- Sonja Heiduschka
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
2
|
Scherrer C, Loret C, Védrenne N, Buckley C, Lia AS, Kermene V, Sturtz F, Favreau F, Rovini A, Faye PA. From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease. J Tissue Eng 2025; 16:20417314241310508. [PMID: 40078221 PMCID: PMC11898049 DOI: 10.1177/20417314241310508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/14/2024] [Indexed: 03/14/2025] Open
Abstract
Peripheral neuropathies are disorders affecting the peripheral nervous system. Among them, Charcot-Marie-Tooth disease is an inherited sensorimotor neuropathy for which no effective treatment exists yet. Research on Charcot-Marie-Tooth disease has been hampered by difficulties in accessing relevant cells, such as sensory and motor neurons, Schwann cells, and myocytes, which interact at the neuromuscular junction, the specialized synapses formed between nerves and skeletal muscles. This review first outlines the various in vivo models and methods used to study neuromuscular junction deficiencies in Charcot-Marie-Tooth disease. We then explore novel in vitro techniques and models, including complex hiPSC-derived cultures, which offer promising isogenic and reproducible neuromuscular junction models. The adaptability of in vitro culture methods, including cell origin, cell-type combinations, and choice of culture format, adds complexity and excitement to this rapidly evolving field. This review aims to recapitulate available tools for studying Charcot-Marie-Tooth disease to understand its pathophysiological mechanisms and test potential therapies.
Collapse
Affiliation(s)
- Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Nicolas Védrenne
- University of Limoges, Inserm U1248 Pharmacology & Transplantation, Limoges, France
| | - Colman Buckley
- University of Limoges, XLIM, CNRS UMR 7252, Limoges, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
- Department of Bioinformatics, CHU Limoges, Limoges, France
| | | | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| |
Collapse
|
3
|
Keller AS, Sun KY, Francisco A, Robinson H, Beydler E, Bassett DS, Cieslak M, Cui Z, Davatzikos C, Fan Y, Gardner M, Kishton R, Kornfield SL, Larsen B, Li H, Linder I, Pines A, Pritschet L, Raznahan A, Roalf DR, Seidlitz J, Shafiei G, Shinohara RT, Wolf DH, Alexander-Bloch A, Satterthwaite TD, Shanmugan S. Reproducible Sex Differences in Personalized Functional Network Topography in Youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615061. [PMID: 39386637 PMCID: PMC11463432 DOI: 10.1101/2024.09.26.615061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Kevin Y Sun
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Francisco
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heather Robinson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Beydler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, and Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Matthew Cieslak
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Gardner
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Kishton
- Department of Family Medicine and Community Health, Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara L Kornfield
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, Institute of Child Development, University of Minnesota, Minneapolis, MN 55414, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabella Linder
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Laura Pritschet
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - David R Roalf
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Golia Shafiei
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheila Shanmugan
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
5
|
Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci 2023; 17:1248922. [PMID: 37900588 PMCID: PMC10600466 DOI: 10.3389/fncel.2023.1248922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Schwann cells (SCs) have a critical role in the peripheral nervous system. These cells are able to support axons during homeostasis and after injury. However, mutations in genes associated with the SCs repair program or myelination result in dysfunctional SCs. Several neuropathies such as Charcot-Marie-Tooth (CMT) disease, diabetic neuropathy and Guillain-Barré syndrome show abnormal SC functions and an impaired regeneration process. Thus, understanding SCs-axon interaction and the nerve environment in the context of homeostasis as well as post-injury and disease onset is necessary. Several neurotrophic factors, cytokines, and regulators of signaling pathways associated with proliferation, survival and regeneration are involved in this process. Preclinical studies have focused on the discovery of therapeutic targets for peripheral neuropathies and injuries. To study the effect of new therapeutic targets, modeling neuropathies and peripheral nerve injuries (PNIs) in vitro and in vivo are useful tools. Furthermore, several in vitro protocols have been designed using SCs and neuron cell lines to evaluate these targets in the regeneration process. SCs lines have been used to generate effective myelinating SCs without success. Alternative options have been investigated using direct conversion from somatic cells to SCs or SCs derived from pluripotent stem cells to generate functional SCs. This review will go over the advantages of these systems and the problems associated with them. In addition, there have been challenges in establishing adequate and reproducible protocols in vitro to recapitulate repair SC-neuron interactions observed in vivo. So, we also discuss the mechanisms of repair SCs-axon interactions in the context of peripheral neuropathies and nerve injury (PNI) in vitro and in vivo. Finally, we summarize current preclinical studies evaluating transgenes, drug, and novel compounds with translational potential into clinical studies.
Collapse
Affiliation(s)
| | | | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
6
|
Van Lent J, Vendredy L, Adriaenssens E, Da Silva Authier T, Asselbergh B, Kaji M, Weckhuysen S, Van Den Bosch L, Baets J, Timmerman V. Downregulation of PMP22 ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain 2023; 146:2885-2896. [PMID: 36511878 PMCID: PMC10316758 DOI: 10.1093/brain/awac475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 10/11/2023] Open
Abstract
Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Marcus Kaji
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, KU Leuven—University of Leuven, Leuven 3000, Belgium
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
7
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
8
|
Shanmugan S, Seidlitz J, Cui Z, Adebimpe A, Bassett DS, Bertolero MA, Davatzikos C, Fair DA, Gur RE, Gur RC, Larsen B, Li H, Pines A, Raznahan A, Roalf DR, Shinohara RT, Vogel J, Wolf DH, Fan Y, Alexander-Bloch A, Satterthwaite TD. Sex differences in the functional topography of association networks in youth. Proc Natl Acad Sci U S A 2022; 119:e2110416119. [PMID: 35939696 PMCID: PMC9388107 DOI: 10.1073/pnas.2110416119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2022] [Indexed: 01/16/2023] Open
Abstract
Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Jakob Seidlitz
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Zaixu Cui
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
- Chinese Institute for Brain Research, Beijing,102206, China
| | - Azeez Adebimpe
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Danielle S. Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
- Santa Fe Institute, Santa Fe, NM 87501
| | - Maxwell A. Bertolero
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Christos Davatzikos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| | - Damien A. Fair
- Department of Behavioral Neuroscience, Department of Psychiatry, Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Armin Raznahan
- Section on Developmental Neurogenomics Unit, Intramural Research Program, National Institutes of Mental Health, Bethesda, MD 20892
| | - David R. Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Russell T. Shinohara
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104
| | - Jacob Vogel
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
- Penn-Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Sainio MT, Rasila T, Molchanova SM, Järvilehto J, Torregrosa-Muñumer R, Harjuhaahto S, Pennonen J, Huber N, Herukka SK, Haapasalo A, Zetterberg H, Taira T, Palmio J, Ylikallio E, Tyynismaa H. Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front Cell Dev Biol 2022; 9:820105. [PMID: 35237613 PMCID: PMC8883324 DOI: 10.3389/fcell.2021.820105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022] Open
Abstract
Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot-Marie-Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Markus T. Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana M. Molchanova
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Julius Järvilehto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandra Harjuhaahto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
11
|
Müller JS, Horvath R. Modelling Charcot-Marie-Tooth disease in a dish reveals common cell type-specific alterations. Brain 2021; 144:2234-2236. [PMID: 34318312 PMCID: PMC8418343 DOI: 10.1093/brain/awab278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022] Open
Abstract
This scientific commentary refers to ‘Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction’, by Van Lent et al. (doi:10.1093/brain/awab226).
Collapse
Affiliation(s)
- Juliane S Müller
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021; 22:7730. [PMID: 34299348 PMCID: PMC8306397 DOI: 10.3390/ijms22147730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases disrupt cellular energy production and are among the most complex group of inherited genetic disorders. Affecting approximately 1 in 5000 live births, they are both clinically and genetically heterogeneous, and can be highly tissue specific, but most often affect cell types with high energy demands in the brain, heart, and kidneys. There are currently no clinically validated treatment options available, despite several agents showing therapeutic promise. However, modelling these disorders is challenging as many non-human models of mitochondrial disease do not completely recapitulate human phenotypes for known disease genes. Additionally, access to disease-relevant cell or tissue types from patients is often limited. To overcome these difficulties, many groups have turned to human pluripotent stem cells (hPSCs) to model mitochondrial disease for both nuclear-DNA (nDNA) and mitochondrial-DNA (mtDNA) contexts. Leveraging the capacity of hPSCs to differentiate into clinically relevant cell types, these models permit both detailed investigation of cellular pathomechanisms and validation of promising treatment options. Here we catalogue hPSC models of mitochondrial disease that have been generated to date, summarise approaches and key outcomes of phenotypic profiling using these models, and discuss key criteria to guide future investigations using hPSC models of mitochondrial disease.
Collapse
Affiliation(s)
- Cameron L. McKnight
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yau Chung Low
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David A. Elliott
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Van Lent J, Verstraelen P, Asselbergh B, Adriaenssens E, Mateiu L, Verbist C, De Winter V, Eggermont K, Van Den Bosch L, De Vos WH, Timmerman V. Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain 2021; 144:2471-2485. [PMID: 34128983 PMCID: PMC8418338 DOI: 10.1093/brain/awab226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Axonal Charcot-Marie-Tooth neuropathies (CMT type 2) are caused by inherited mutations in various genes functioning in different pathways. The type of genes and multiplicity of mutations reflect the clinical and genetic heterogeneity in CMT2 disease, which complicates the diagnosis and has halted therapy development. Here, we used CMT2 patient-derived pluripotent stem cells (iPSCs) to identify common hallmarks of axonal degeneration shared by different CMT2 subtypes. We compared the cellular phenotypes of neurons differentiated from CMT2 patient iPSCs with those from healthy controls and a CRISPR/Cas9-corrected isogenic line. Our results demonstrate neurite network alterations along with extracellular electrophysiological abnormalities in the differentiated motor neurons. Progressive deficits in mitochondrial and lysosomal trafficking, as well as in mitochondrial morphology, were observed in all CMT2 patient lines. Differentiation of the same CMT2 iPSC-lines into peripheral sensory neurons, only gave rise to cellular phenotypes in subtypes with sensory involvement, supporting the notion that some gene mutations predominantly affect motor neurons. We revealed a common mitochondrial dysfunction in CMT2-derived motor neurons, supported by alterations in the expression pattern and oxidative phosphorylation, which could be recapitulated in the sciatic nerve tissue of a symptomatic mouse model. Inhibition of a dual leucine zipper kinase (DLK) could partially ameliorate the mitochondrial disease phenotypes in CMT2 subtypes. Altogether, our data reveals shared cellular phenotypes across different CMT2 subtypes and suggests that targeting such common pathomechanisms could allow the development of a uniform treatment for CMT2.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Ligia Mateiu
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
| | - Christophe Verbist
- Laboratory of Molecular Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, 3000, Belgium.,VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, 3000, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerp, 2610, Belgium
| |
Collapse
|
14
|
Pisciotta C, Saveri P, Pareyson D. Updated review of therapeutic strategies for Charcot-Marie-Tooth disease and related neuropathies. Expert Rev Neurother 2021; 21:701-713. [PMID: 34033725 DOI: 10.1080/14737175.2021.1935242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Charcot-Marie-Tooth disease (CMT) and related neuropathies represent the most prevalent inherited neuromuscular disorders. Nonetheless, there is still no pharmacological treatment available for any CMT type. However, the landscape is rapidly evolving and several novel approaches are providing encouraging results in preclinical studies and leading to clinical trials.Areas covered: The authors review the most promising therapies under study and the ongoing/planned clinical trials. Several approaches to address PMP22 overexpression underlying CMT1A, the most frequent subtype, are being tested. Gene silencing, targeting PMP22, and gene therapy, to introduce specific genes or to substitute or modulate defective ones, are being experimented in animal models. Compounds acting on ER stress, unfolded protein response, neuregulin pathways, phosphoinositides metabolism, axonal transport and degeneration, inflammation, polyol pathway, deoxysphingolipid metabolism, purine nucleotide pool are potential therapeutic candidates for different forms of CMT and related neuropathies.Expert opinion: We are getting closer to find effective therapies for CMT, but are far behind the exciting examples of other genetic neuromuscular disorders. The authors analyze the possible reasons for this gap and the way to fill it. Preclinical and clinical research is ongoing with coordinated efforts and they are confident that in the next few years we will see the first effective treatments.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Saveri
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
15
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021. [DOI: 10.3390/cells10020352
expr 820281011 + 880698691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α’s roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington’s Disease, Parkinson’s Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
16
|
Dysregulation of PGC-1α-Dependent Transcriptional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells 2021; 10:cells10020352. [PMID: 33572179 PMCID: PMC7915819 DOI: 10.3390/cells10020352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Substantial evidence indicates that mitochondrial impairment contributes to neuronal dysfunction and vulnerability in disease states, leading investigators to propose that the enhancement of mitochondrial function should be considered a strategy for neuroprotection. However, multiple attempts to improve mitochondrial function have failed to impact disease progression, suggesting that the biology underlying the normal regulation of mitochondrial pathways in neurons, and its dysfunction in disease, is more complex than initially thought. Here, we present the proteins and associated pathways involved in the transcriptional regulation of nuclear-encoded genes for mitochondrial function, with a focus on the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). We highlight PGC-1α's roles in neuronal and non-neuronal cell types and discuss evidence for the dysregulation of PGC-1α-dependent pathways in Huntington's Disease, Parkinson's Disease, and developmental disorders, emphasizing the relationship between disease-specific cellular vulnerability and cell-type-specific patterns of PGC-1α expression. Finally, we discuss the challenges inherent to therapeutic targeting of PGC-1α-related transcriptional programs, considering the roles for neuron-enriched transcriptional coactivators in co-regulating mitochondrial and synaptic genes. This information will provide novel insights into the unique aspects of transcriptional regulation of mitochondrial function in neurons and the opportunities for therapeutic targeting of transcriptional pathways for neuroprotection.
Collapse
|
17
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
18
|
Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y. How to reprogram human fibroblasts to neurons. Cell Biosci 2020; 10:116. [PMID: 33062254 PMCID: PMC7549215 DOI: 10.1186/s13578-020-00476-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Destruction and death of neurons can lead to neurodegenerative diseases. One possible way to treat neurodegenerative diseases and damage of the nervous system is replacing damaged and dead neurons by cell transplantation. If new neurons can replace the lost neurons, patients may be able to regain the lost functions of memory, motor, and so on. Therefore, acquiring neurons conveniently and efficiently is vital to treat neurological diseases. In recent years, studies on reprogramming human fibroblasts into neurons have emerged one after another, and this paper summarizes all these studies. Scientists find small molecules and transcription factors playing a crucial role in reprogramming and inducing neuron production. At the same time, both the physiological microenvironment in vivo and the physical and chemical factors in vitro play an essential role in the induction of neurons. Therefore, this paper summarized and analyzed these relevant factors. In addition, due to the unique advantages of physical factors in the process of reprogramming human fibroblasts into neurons, such as safe and minimally invasive, it has a more promising application prospect. Therefore, this paper also summarizes some successful physical mechanisms of utilizing fibroblasts to acquire neurons, which will provide new ideas for somatic cell reprogramming.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Shengnan Su
- The Second Hospital of Jilin University, Jilin, Changchun, 130041 China
| | - Siyan Zhou
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Wentao Yang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Xin Deng
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China.,Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| |
Collapse
|