1
|
Fadli NA, Abdul Rahman M, Karsani SA, Ramli R. Oral and Gingival Crevicular Fluid Biomarkers for Jawbone Turnover Diseases: A Scoping Review. Diagnostics (Basel) 2024; 14:2184. [PMID: 39410587 PMCID: PMC11475764 DOI: 10.3390/diagnostics14192184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Gingival crevicular fluid (GCF) and oral fluid have emerged as promising diagnostic tools for detecting biomarkers. This review aimed to evaluate the existing literature on using oral fluids as a source of biomarkers for bone turnover diseases affecting the jawbone. A comprehensive search strategy was executed between August 2014 and August 2024 across five major databases (Web of Science, EBSCOhost Dentistry & Oral Sciences Source, Cochrane Library, Scopus, and PubMed) and grey literature sources. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was applied. The screening was facilitated using Rayyan at rayyan.ai and Endnote X20 software tools, culminating in the evaluation of 14,965 citations from databases and 34 from grey literature. Following rigorous scrutiny, 37 articles were selected for inclusion in this review, encompassing diseases such as periodontitis, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis. The quality of the included observational studies was assessed using the Revised Risk of Bias Assessment Tool for Non-Randomized Studies (RoBANS 2). Interleukin-1 beta (IL-1β), sclerostin, osteoprotegerin (OPG), and interleukin-34 (IL-34) emerged as significant biomarkers in GCF, and they were mainly from periodontitis and osteoporosis. Osteocalcin (OC), IL-1β, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), OPG, and matrix metalloproteinase-9 (MMP-9) were significant in oral fluid or saliva, and they were from periodontitis, MRONJ, and osteoporosis. These findings underscore the potential use of oral fluids, which are regarded as non-invasive tools for biomarker identification in bone turnover. Many biomarkers overlap, and it is important to identify other specific biomarkers to enable accurate diagnosis of these conditions.
Collapse
Affiliation(s)
- Nurfatima Azzahra Fadli
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Mariati Abdul Rahman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
2
|
Liu S, Pang Q, Guan W, Yu F, Wang O, Li M, Xing X, Yu W, Jiang Y, Xia W. Association of serum osteocalcin with bone microarchitecture and muscle mass in Beijing community-dwelling postmenopausal women. Endocrine 2024; 84:236-244. [PMID: 38206435 DOI: 10.1007/s12020-023-03668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Osteoporosis is a systemic skeletal disease with increasing bone fragility and prone to fracture. Osteocalcin (OC), as the most abundant non collagen in bone matrix, has been extensively used in clinic as a biochemical marker of osteogenesis. Two forms of OC were stated on circulation, including carboxylated osteocalcin (cOC) and undercarboxylated osteocalcin (ucOC). OC was not only involved in bone mineralization, but also in the regulation of muscle function. OBJECTIVE This study explored the relationship between serum OC, cOC, ucOC levels and bone mineral density (BMD), bone microarchitecture, muscle mass and physical activity in Chinese postmenopausal women. METHOD 216 community-dwelling postmenopausal women were randomized enrolled. All subjects completed biochemical measurements, including serum β-isomer of C-terminal telopeptides of type I collagen (β-CTX), N-terminal propeptide of type 1 procollagen (P1NP), alkaline phosphatase (ALP), OC, cOC and ucOC. They completed X-ray absorptiometry (DXA) scan to measure BMD, appendicular lean mass (ALM) and trabecular bone score (TBS). They completed high resolution peripheral quantitative CT (HR-pQCT) to assess peripheral bone microarchitectures. RESULTS Serum OC, cOC and ucOC were elevated in osteoporosis postmenopausal women. In bone geometry, serum ucOC was positively related with total bone area (Tt.Ar) and trabecular area(Tb.Ar). In bone volumetric density, serum OC and ucOC were negatively associated with total volume bone mineral density (Tt.vBMD) and trabecular volume bone mineral density (Tb.vBMD). In bone microarchitecture, serum OC and ucOC were negatively correlative with Tb.N and Tb.BV/TV, and were positively correlated with Tb.Sp. Serum OC and ucOC were positively associated with Tb.1/N.SD. Serum OC was negatively related with Tb.Th. Serum ucOC was positively associated with ALM. The high level of serum OC was the risk factor of osteoporosis. ALM was the protective factor for osteoporosis. CONCLUSION All forms of serum OC were negatively associated with BMD. Serum OC and ucOC mainly influenced microstructure of trabecular bone in peripheral skeletons. Serum ucOC participated in modulating both bone microstructure and muscle mass.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Wenmin Guan
- Department of Radiology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Fan Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Wei Yu
- Department of Radiology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730, Beijing, China.
| |
Collapse
|
3
|
Sobczak-Jaskow H, Kochańska B, Drogoszewska B. Composition and Properties of Saliva in Patients with Osteoporosis Taking Antiresorptive Drugs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4294. [PMID: 36901300 PMCID: PMC10002130 DOI: 10.3390/ijerph20054294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED The aim of this study was to examine how the composition and properties of saliva change in people with osteoporosis who have received antiresorptive (AR) treatment, compared to patients with osteoporosis who have not yet received this treatment. METHODS The study population consisted of 38 patients with osteoporosis using AR drugs (Group I) and 16 patients with osteoporosis who had never used AR drugs (Group II). The control group consisted of 32 people without osteoporosis. Laboratory tests included determination of pH and concentrations of Ca, PO4, total protein, lactoferrin, lysozyme, sIgA, IgA, cortisol, neopterin, activity of amylase at rest, and stimulated saliva. The buffering capacity of stimulated saliva was also determined. RESULTS There were no statistically significant differences between the saliva of Group I and Group II. No statistically significant correlation was found between the amount of time using AR therapy (Group I) and the tested parameters of the saliva. Significant differences were found between Group I and the control group. The concentrations of PO4, lysozyme, and cortisol were higher, while concentrations of Ca ions, sIgA, and neopterin were lower, in comparison to the control group. The significant differences between Group II and the control group were smaller, and they concerned only the concentrations of lysozyme, cortisol, and neopterin. CONCLUSIONS The saliva of people with osteoporosis subjected to AR therapy and those not subjected to AR therapy did not show statistically significant differences in terms of the examined parameters of the saliva. However, the saliva of patients with osteoporosis taking and not taking AR drugs was significantly different compared to the saliva of the control group.
Collapse
Affiliation(s)
- Hanna Sobczak-Jaskow
- Department of Maxillofacial Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Barbara Kochańska
- Department of Conservative Dentistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Barbara Drogoszewska
- Department of Maxillofacial Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
4
|
Vitale JA, Sansoni V, Faraldi M, Messina C, Verdelli C, Lombardi G, Corbetta S. Circulating Carboxylated Osteocalcin Correlates With Skeletal Muscle Mass and Risk of Fall in Postmenopausal Osteoporotic Women. Front Endocrinol (Lausanne) 2021; 12:669704. [PMID: 34025583 PMCID: PMC8133362 DOI: 10.3389/fendo.2021.669704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bone and skeletal muscle represent a single functional unit. We cross-sectionally investigated body composition, risk of fall and circulating osteocalcin (OC) isoforms in osteoporotic postmenopausal women to test the hypothesis of an involvement of OC in the bone-muscle crosstalk. Materials and Methods Twenty-nine non-diabetic, non-obese, postmenopausal osteoporotic women (age 72.4 ± 6.8 years; BMI 23.0 ± 3.3 kg/m2) underwent to: 1) fasting blood sampling for biochemical and hormone assays, including carboxylated (cOC) and uncarboxylated (uOC) osteocalcin; 2) whole-body dual energy X-ray absorptiometry (DXA) to assess total and regional body composition; 3) magnetic resonance imaging to determine cross-sectional muscle area (CSA) and intermuscular adipose tissue (IMAT) of thigh muscles; 4) risk of fall assessment through the OAK system. Results Appendicular skeletal muscle index (ASMMI) was low in 45% of patients. Forty percent got a low OAK score, consistent with moderate-severe risk of fall, which was predicted by low legs lean mass and increased total fat mass. Circulating cOC levels showed significantly correlated with βCTx-I, lean mass parameters including IMAT, and OAK score. Fractured and unfractured women did not differ for any of the analyzed parameters, though cOC and uOC positively correlated with legs lean mass, OAK score and bone markers only in fractured women. Conclusions Data supported the relationship between OC and skeletal muscle mass and function in postmenopausal osteoporotic women. Serum cOC, but not uOC, emerges as mediator in the bone-muscle crosstalk. Circulating cOC and uOC levels may be differentially regulated in fractured and unfractured osteoporotic women, suggesting underlying differences in bone metabolism.
Collapse
Affiliation(s)
- Jacopo Antonino Vitale
- Laboratory of Movement and Sport Science, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Martina Faraldi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Carmelo Messina
- Radiology Unit, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Sabrina Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|