1
|
Kim YJ, Ko SY, Kim S, Choi KM, Ryu WH. Cathodes Coating Layer with Li-Ion Diffusion Selectivity Employing Interactive Network of Metal-Organic Polyhedras for Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206561. [PMID: 36436836 DOI: 10.1002/smll.202206561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Surface modification of cathodes using Ni-rich coating layers prevents bulk and surface degradation for the stable operation of Li-ion batteries at high voltages. However, insulating and dense inorganic coating layers often impede charge transfer and ion diffusion kinetics. In this study, the fabrication of dual functional coating materials using metal-organic polyhedra (MOP) with 3D networks within microporous units of Li-ion batteries for surface stabilization and facile ion diffusion is proposed. Zr-based MOP is modified by introducing acyl groups as a chemical linkage (MOPAC), and MOPAC layers are homogenously coated by simple spray coating on the cathode. The coating allow the smooth transport of electrons and ions. MOPAC effectively suppress side reactions between the cathode and electrolyte and protect active materials against aggressive fluoride ions by forming a Li-ion selective passivation film. The MOPAC-coated Ni-rich layered cathode exhibited better cycle retention and enhanced kinetic properties than pristine and MOP-coated cathodes. Reduction of undesirable gas evolution on the cathode by MOPAC is also verified. Microporous MOPAC coating can simultaneously stabilize both the bulk and surface of the Ni-rich layered cathode and maintain good electrochemical reaction kinetics for high-performance Li-ion batteries.
Collapse
Affiliation(s)
- You Jin Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - So Yeon Ko
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Suji Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Won-Hee Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| |
Collapse
|
2
|
|