1
|
Pistel M, Laun FB, Bickelhaupt S, Dada A, Weiland E, Niederdränk T, Uder M, Janka R, Wenkel E, Ohlmeyer S. Differentiating Benign and Malignant Breast Lesions in Diffusion Kurtosis MRI: Does the Averaging Procedure Matter? J Magn Reson Imaging 2022; 56:1343-1352. [PMID: 35289015 DOI: 10.1002/jmri.28150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Diffusion kurtosis imaging (DKI) is used to differentiate between benign and malignant breast lesions. DKI fits are performed either on voxel-by-voxel basis or using volume-averaged signal. PURPOSE Investigate and compare DKI parameters' diagnostic performance using voxel-by-voxel and volume-averaged signal fit approach. STUDY TYPE Retrospective. STUDY POPULATION A total of 104 patients, aged 24.1-86.4 years. FIELD STRENGTH/SEQUENCE A 3 T Spin-echo planar diffusion-weighted sequence with b-values: 50 s/mm2 , 750 s/mm2 , and 1500 s/mm2 . Dynamic contrast enhanced (DCE) sequence. ASSESSMENT Lesions were manually segmented by M.P. under supervision of S.O. (2 and 5 years of experience in breast MRI). DKI fits were performed on voxel-by-voxel basis and with volume-averaged signal. Diagnostic performance of DKI parameters D K (kurtosis corrected diffusion coefficient) and kurtosis K was compared between both approaches. STATISTICAL TESTS Receiver operating characteristics analysis and area under the curve (AUC) values were computed. Wilcoxon rank sum and Students t-test tested DKI parameters for significant (P <0.05) difference between benign and malignant lesions. DeLong test was used to test the DKI parameter performance for significant fit approach dependency. Correlation between parameters of the two approaches was determined by Pearson correlation coefficient. RESULTS DKI parameters were significantly different between benign and malignant lesions for both fit approaches. Median benign vs. malignant values for voxel-by-voxel and volume-averaged approach were 2.00 vs. 1.28 ( D K in μm2 /msec), 2.03 vs. 1.26 ( D K in μm2 /msec), 0.54 vs. 0.90 ( K ), 0.55 vs. 0.99 ( K ). AUC for voxel-by-voxel and volume-averaged fit were 0.9494 and 0.9508 ( D K ); 0.9175 and 0.9298 ( K ). For both, AUC did not differ significantly (P = 0.20). Correlation of values between the two approaches was very high (r = 0.99 for D K and r = 0.97 for K ). DATA CONCLUSION Voxel-by-voxel and volume-averaged signal fit approach are equally well suited for differentiating between benign and malignant breast lesions in DKI. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Mona Pistel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Siemens Healthineers AG, Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Bickelhaupt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anes Dada
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Elisabeth Weiland
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Evelyn Wenkel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
3
|
Ludwig D, Laun FB, Klika KD, Rauch J, Ladd ME, Bachert P, Kuder TA. Diffusion pore imaging in the presence of extraporal water. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107219. [PMID: 35533642 DOI: 10.1016/j.jmr.2022.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Diffusion-weighted imaging (DWI) is a powerful, non-invasive tool which is widely used in clinical routine. Mostly, apparent diffusion coefficient maps are acquired, which cannot be related directly to cellular structure. More recently it was shown that DWI is able to reconstruct pore shapes using a specialized magnetic field gradient scheme so that cell size distributions may be obtained. So far, artificial systems have been used for experimental demonstration without extraporal signal components and relatively low gradient amplitudes. The aim of this study was to investigate the feasibility of diffusion pore imaging in the presence of extraporal fluids and to develop correction methods for the effects arising from extraporal signal contributions. Monte Carlo simulations and validation experiments on a 14.1 T NMR spectrometer equipped with a dedicated diffusion probe head were performed. Both by using a filter gradient approach suppressing extraporal signal components as well as by using post-processing methods relying on the Gaussian phase approximation, it was possible to reconstruct pore space functions in the presence of extraporal fluids with little to no deviations from the expectations. These results may be a significant step towards application of diffusion pore imaging to biological samples.
Collapse
Affiliation(s)
- Dominik Ludwig
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Rauch
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
| | - Mark Edward Ladd
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Tristan Anselm Kuder
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Yang ZL, Hu YQ, Huang J, Zhan CA, Zhou MX, Zhang XY, Zhang HT, Xia LM, Ai T. Detection and Classification of Breast Lesions With Readout-Segmented Diffusion-Weighted Imaging in a Large Chinese Cohort. Front Oncol 2021; 11:636471. [PMID: 33828984 PMCID: PMC8020903 DOI: 10.3389/fonc.2021.636471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023] Open
Abstract
Objectives: To evaluate the performance of readout-segmented echo-planar imaging DWI (rs-EPI DWI) in detecting and characterizing breast cancers in a large Chinese cohort with comparison to dynamic contrast-enhanced MRI (DCE-MRI). Methods: The institutional review board approved this retrospective study with waived written informed consent. A total of 520 women (mean age, 43.1- ± 10.5-years) were included from July 2013 to October 2019. First, the ability of rs-EPI DWI in detecting breast lesions identified by DCE-MRI was evaluated. The lesion conspicuity of rs-EPI-DWI and DCE-MRI was compared using the Wilcoxon signed rank test. With pathology as a reference, the performance of rs-EPI DWI and DCE-MRI in distinguishing breast cancers was evaluated and compared using the Chi-square test. Results: Of 520 women, 327/520 (62.9%) patients had 423 lesions confirmed by pathology with 203 benign and 220 malignant lesions. The rs-EPI DWI can detect 90.8% (659/726) (reader 1) and 90.6% (663/732) (reader 2) of lesions identified by DCE-MRI. The lesion visibility was superior for DCE-MRI than rs-EPI-DWI (all p < 0.05). With pathology as a reference, the sensitivities and specificities of rs-EPI DWI in diagnosing breast cancers were 95.9% (211/220) and 85.7% (174/203) for reader 1 and 97.7% (215/220) and 86.2% (175/203) for reader 2. No significant differences were found for the performance of DCE-MRI and rs-EPI DWI in discriminating breast cancers (all p > 0.05). Conclusions: Although with an inferior lesion visibility, rs-EPI DWI can detect about 90% of breast lesions identified by DCE-MRI and has comparable diagnostic capacity to that of DCE-MRI in identifying breast cancer.
Collapse
Affiliation(s)
- Zhen Lu Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qi Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ao Zhan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiong Zhou
- College of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | | | | | - Li Ming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|