1
|
Fletcher MD, Akis E, Verschuur CA, Perry SW. Improved tactile speech perception and noise robustness using audio-to-tactile sensory substitution with amplitude envelope expansion. Sci Rep 2024; 14:15029. [PMID: 38951556 PMCID: PMC11217272 DOI: 10.1038/s41598-024-65510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Recent advances in haptic technology could allow haptic hearing aids, which convert audio to tactile stimulation, to become viable for supporting people with hearing loss. A tactile vocoder strategy for audio-to-tactile conversion, which exploits these advances, has recently shown significant promise. In this strategy, the amplitude envelope is extracted from several audio frequency bands and used to modulate the amplitude of a set of vibro-tactile tones. The vocoder strategy allows good consonant discrimination, but vowel discrimination is poor and the strategy is susceptible to background noise. In the current study, we assessed whether multi-band amplitude envelope expansion can effectively enhance critical vowel features, such as formants, and improve speech extraction from noise. In 32 participants with normal touch perception, tactile-only phoneme discrimination with and without envelope expansion was assessed both in quiet and in background noise. Envelope expansion improved performance in quiet by 10.3% for vowels and by 5.9% for consonants. In noise, envelope expansion improved overall phoneme discrimination by 9.6%, with no difference in benefit between consonants and vowels. The tactile vocoder with envelope expansion can be deployed in real-time on a compact device and could substantially improve clinical outcomes for a new generation of haptic hearing aids.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Esma Akis
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Carl A Verschuur
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
2
|
Fletcher MD, Perry SW, Thoidis I, Verschuur CA, Goehring T. Improved tactile speech robustness to background noise with a dual-path recurrent neural network noise-reduction method. Sci Rep 2024; 14:7357. [PMID: 38548750 PMCID: PMC10978864 DOI: 10.1038/s41598-024-57312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Many people with hearing loss struggle to understand speech in noisy environments, making noise robustness critical for hearing-assistive devices. Recently developed haptic hearing aids, which convert audio to vibration, can improve speech-in-noise performance for cochlear implant (CI) users and assist those unable to access hearing-assistive devices. They are typically body-worn rather than head-mounted, allowing additional space for batteries and microprocessors, and so can deploy more sophisticated noise-reduction techniques. The current study assessed whether a real-time-feasible dual-path recurrent neural network (DPRNN) can improve tactile speech-in-noise performance. Audio was converted to vibration on the wrist using a vocoder method, either with or without noise reduction. Performance was tested for speech in a multi-talker noise (recorded at a party) with a 2.5-dB signal-to-noise ratio. An objective assessment showed the DPRNN improved the scale-invariant signal-to-distortion ratio by 8.6 dB and substantially outperformed traditional noise-reduction (log-MMSE). A behavioural assessment in 16 participants showed the DPRNN improved tactile-only sentence identification in noise by 8.2%. This suggests that advanced techniques like the DPRNN could substantially improve outcomes with haptic hearing aids. Low-cost haptic devices could soon be an important supplement to hearing-assistive devices such as CIs or offer an alternative for people who cannot access CI technology.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Iordanis Thoidis
- School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Carl A Verschuur
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Tobias Goehring
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
3
|
Fletcher MD, Akis E, Verschuur CA, Perry SW. Improved tactile speech perception using audio-to-tactile sensory substitution with formant frequency focusing. Sci Rep 2024; 14:4889. [PMID: 38418558 PMCID: PMC10901863 DOI: 10.1038/s41598-024-55429-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Haptic hearing aids, which provide speech information through tactile stimulation, could substantially improve outcomes for both cochlear implant users and for those unable to access cochlear implants. Recent advances in wide-band haptic actuator technology have made new audio-to-tactile conversion strategies viable for wearable devices. One such strategy filters the audio into eight frequency bands, which are evenly distributed across the speech frequency range. The amplitude envelopes from the eight bands modulate the amplitudes of eight low-frequency tones, which are delivered through vibration to a single site on the wrist. This tactile vocoder strategy effectively transfers some phonemic information, but vowels and obstruent consonants are poorly portrayed. In 20 participants with normal touch perception, we tested (1) whether focusing the audio filters of the tactile vocoder more densely around the first and second formant frequencies improved tactile vowel discrimination, and (2) whether focusing filters at mid-to-high frequencies improved obstruent consonant discrimination. The obstruent-focused approach was found to be ineffective. However, the formant-focused approach improved vowel discrimination by 8%, without changing overall consonant discrimination. The formant-focused tactile vocoder strategy, which can readily be implemented in real time on a compact device, could substantially improve speech perception for haptic hearing aid users.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Esma Akis
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Carl A Verschuur
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
4
|
Fletcher MD, Verschuur CA, Perry SW. Improving speech perception for hearing-impaired listeners using audio-to-tactile sensory substitution with multiple frequency channels. Sci Rep 2023; 13:13336. [PMID: 37587166 PMCID: PMC10432540 DOI: 10.1038/s41598-023-40509-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Cochlear implants (CIs) have revolutionised treatment of hearing loss, but large populations globally cannot access them either because of disorders that prevent implantation or because they are expensive and require specialist surgery. Recent technology developments mean that haptic aids, which transmit speech through vibration, could offer a viable low-cost, non-invasive alternative. One important development is that compact haptic actuators can now deliver intense stimulation across multiple frequencies. We explored whether these multiple frequency channels can transfer spectral information to improve tactile phoneme discrimination. To convert audio to vibration, the speech amplitude envelope was extracted from one or more audio frequency bands and used to amplitude modulate one or more vibro-tactile tones delivered to a single-site on the wrist. In 26 participants with normal touch sensitivity, tactile-only phoneme discrimination was assessed with one, four, or eight frequency bands. Compared to one frequency band, performance improved by 5.9% with four frequency bands and by 8.4% with eight frequency bands. The multi-band signal-processing approach can be implemented in real-time on a compact device, and the vibro-tactile tones can be reproduced by the latest compact, low-powered actuators. This approach could therefore readily be implemented in a low-cost haptic hearing aid to deliver real-world benefits.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Carl A Verschuur
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Samuel W Perry
- University of Southampton Auditory Implant Service, University of Southampton, University Road, Southampton, SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|
5
|
Belkacem AN, Jamil N, Khalid S, Alnajjar F. On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci 2023; 17:1085173. [PMID: 37033911 PMCID: PMC10076878 DOI: 10.3389/fnhum.2023.1085173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Emerging brain technologies have significantly transformed human life in recent decades. For instance, the closed-loop brain-computer interface (BCI) is an advanced software-hardware system that interprets electrical signals from neurons, allowing communication with and control of the environment. The system then transmits these signals as controlled commands and provides feedback to the brain to execute specific tasks. This paper analyzes and presents the latest research on closed-loop BCI that utilizes electric/magnetic stimulation, optogenetic, and sonogenetic techniques. These techniques have demonstrated great potential in improving the quality of life for patients suffering from neurodegenerative or psychiatric diseases. We provide a comprehensive and systematic review of research on the modalities of closed-loop BCI in recent decades. To achieve this, the authors used a set of defined criteria to shortlist studies from well-known research databases into categories of brain stimulation techniques. These categories include deep brain stimulation, transcranial magnetic stimulation, transcranial direct-current stimulation, transcranial alternating-current stimulation, and optogenetics. These techniques have been useful in treating a wide range of disorders, such as Alzheimer's and Parkinson's disease, dementia, and depression. In total, 76 studies were shortlisted and analyzed to illustrate how closed-loop BCI can considerably improve, enhance, and restore specific brain functions. The analysis revealed that literature in the area has not adequately covered closed-loop BCI in the context of cognitive neural prosthetics and implanted neural devices. However, the authors demonstrate that the applications of closed-loop BCI are highly beneficial, and the technology is continually evolving to improve the lives of individuals with various ailments, including those with sensory-motor issues or cognitive deficiencies. By utilizing emerging techniques of stimulation, closed-loop BCI can safely improve patients' cognitive and affective skills, resulting in better healthcare outcomes.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem
| | - Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Sumayya Khalid
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Fady Alnajjar
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- Center for Brain Science, RIKEN, Saitama, Japan
- Fady Alnajjar
| |
Collapse
|
6
|
Tani J, Yang YH, Chen CM, Siow CY, Chang TS, Yang K, Yao J, Hu CJ, Sung JY. Domain-Specific Cognitive Prosthesis for Face Memory and Recognition. Diagnostics (Basel) 2022; 12:diagnostics12092242. [PMID: 36140643 PMCID: PMC9497523 DOI: 10.3390/diagnostics12092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
The present study proposes a cognitive prosthesis device for face memory impairment as a proof-of-concept for the domain-specific cognitive prosthesis. Healthy subjects (n = 6) and a patient with poor face memory were enrolled. An acquaintance face recognition test with and without the use of cognitive prosthesis for face memory impairment, face recognition tests, quality of life, neuropsychological assessments, and machine learning performance of the cognitive prosthesis were followed-up throughout four weeks of real-world device use by the patient. The healthy subjects had an accuracy of 92.38 ± 4.41% and reaction time of 1.27 ± 0.12 s in the initial attempt of the acquaintance face recognition test, which changed to 80.48 ± 6.23% (p = 0.06) and 2.11 ± 0.20 s (p < 0.01) with prosthesis use. The patient had an accuracy of 74.29% and a reaction time of 6.65 s, which improved to 94.29% and 3.28 s with prosthesis use. After four weeks, the patient’s unassisted accuracy and reaction time improved to 100% and 1.23 s. Functional MRI study revealed activation of the left superior temporal lobe during face recognition task without prosthesis use and activation of the right precentral motor area with prosthesis use. The prosthesis could improve the patient’s performance by bypassing the brain area inefficient for facial recognition and employing the area more efficiently for the cognitive task.
Collapse
Affiliation(s)
- Jowy Tani
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
- Biomed Innovation Center, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Medical University Biomed Accelerator, Taipei Medical University, Taipei 106339, Taiwan
- Taipei Medical University Biodesign Center, Taipei Medical University, Taipei 106339, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Yao-Hua Yang
- Biomed Innovation Center, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
| | - Chao-Min Chen
- Biomed Innovation Center, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
| | - Co Yih Siow
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsui-San Chang
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Kai Yang
- MediXgraph Inc., Fremont, CA 94555, USA
| | - Jack Yao
- MediXgraph Inc., Fremont, CA 94555, USA
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235041, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Correspondence: (C.-J.H.); (J.-Y.S.); Tel.: +886-2-2930-7930 (ext. 6940) (J.-Y.S.)
| | - Jia-Ying Sung
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235041, Taiwan
- Correspondence: (C.-J.H.); (J.-Y.S.); Tel.: +886-2-2930-7930 (ext. 6940) (J.-Y.S.)
| |
Collapse
|
7
|
Hamdan EC, Fletcher MD. A Compact Two-Loudspeaker Virtual Sound Reproduction System for Clinical Testing of Spatial Hearing With Hearing-Assistive Devices. Front Neurosci 2022; 15:725127. [PMID: 35153652 PMCID: PMC8835348 DOI: 10.3389/fnins.2021.725127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Exciting developments in hearing aid and cochlear implant technology for linking signal processing across the ears have improved spatial hearing outcomes. This has resulted in an increased emphasis on clinical assessment of the spatial hearing abilities of hearing-assistive device users. Effective assessment of spatial hearing currently requires a large and costly loudspeaker array system, housed in a heavily acoustically treated testing room. This imposes economic and logistical constraints that limit proliferation of array systems, particularly in developing nations. Despite their size and cost, the ability of current clinical array systems to reproduce realistic spatial sound fields is limited, which substantially reduces the range of realistic acoustic scenes that can be used for diagnostic testing. We propose an alternative low-cost, compact virtual acoustics system with just two loudspeakers. This system uses crosstalk cancelation to reproduce pressure signals at the device microphones that match those for real-world sound sources. Furthermore, in contrast to clinical array systems, the system can adapt to different room acoustics, removing the requirement for a heavily acoustically treated testing environment. We conducted a proof-of-concept study in two stages: in the first, we evaluated the physical performance of the system for a stationary listener in anechoic conditions and in a small audiological testing booth with moderate acoustic treatment. To do this, a head and torso simulator was fitted with specially adapted hearing-assistive devices that allowed direct access to the microphone signals. These microphone signals were compared for real and virtual sound sources at numerous source locations. In the second stage, we quantified the system’s robustness to head rotations with and without the system adapting for head position. In the stationary case, the system was found to be highly effective at reproducing signals, such as speech, at all tested source locations. When head rotation was added, it performed well for rotations of up to 2°, even without adapting. However, performance improved markedly for larger rotations when the system adapted. These findings suggest that a compact, low-cost virtual acoustics system can give wider access to advanced and ecologically valid audiological testing, which could substantially improve clinical assessment of hearing-assistive device users.
Collapse
Affiliation(s)
- Eric C. Hamdan
- University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
- *Correspondence: Eric C. Hamdan,
| | - Mark D. Fletcher
- University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
- Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Kim JH, Shim L, Bahng J, Lee HJ. Proficiency in Using Level Cue for Sound Localization Is Related to the Auditory Cortical Structure in Patients With Single-Sided Deafness. Front Neurosci 2021; 15:749824. [PMID: 34707477 PMCID: PMC8542703 DOI: 10.3389/fnins.2021.749824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial hearing, which largely relies on binaural time/level cues, is a challenge for patients with asymmetric hearing. The degree of the deficit is largely variable, and better sound localization performance is frequently reported. Studies on the compensatory mechanism revealed that monaural level cues and monoaural spectral cues contribute to variable behavior in those patients who lack binaural spatial cues. However, changes in the monaural level cues have not yet been separately investigated. In this study, the use of the level cue in sound localization was measured using stimuli of 1 kHz at a fixed level in patients with single-sided deafness (SSD), the most severe form of asymmetric hearing. The mean absolute error (MAE) was calculated and related to the duration/age onset of SSD. To elucidate the biological correlate of this variable behavior, sound localization ability was compared with the cortical volume of the parcellated auditory cortex. In both SSD patients (n = 26) and normal controls with one ear acutely plugged (n = 23), localization performance was best on the intact ear side; otherwise, there was wide interindividual variability. In the SSD group, the MAE on the intact ear side was worse than that of the acutely plugged controls, and it deteriorated with longer duration/younger age at SSD onset. On the impaired ear side, MAE improved with longer duration/younger age at SSD onset. Performance asymmetry across lateral hemifields decreased in the SSD group, and the maximum decrease was observed with the most extended duration/youngest age at SSD onset. The decreased functional asymmetry in patients with right SSD was related to greater cortical volumes in the right posterior superior temporal gyrus and the left planum temporale, which are typically involved in auditory spatial processing. The study results suggest that structural plasticity in the auditory cortex is related to behavioral changes in sound localization when utilizing monaural level cues in patients with SSD.
Collapse
Affiliation(s)
- Ja Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea.,Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Leeseul Shim
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Junghwa Bahng
- Department of Audiology and Speech-Language Pathology, Hallym University of Graduate Studies, Seoul, South Korea
| | - Hyo-Jeong Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea.,Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
9
|
Fletcher MD. Can Haptic Stimulation Enhance Music Perception in Hearing-Impaired Listeners? Front Neurosci 2021; 15:723877. [PMID: 34531717 PMCID: PMC8439542 DOI: 10.3389/fnins.2021.723877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cochlear implants (CIs) have been remarkably successful at restoring hearing in severely-to-profoundly hearing-impaired individuals. However, users often struggle to deconstruct complex auditory scenes with multiple simultaneous sounds, which can result in reduced music enjoyment and impaired speech understanding in background noise. Hearing aid users often have similar issues, though these are typically less acute. Several recent studies have shown that haptic stimulation can enhance CI listening by giving access to sound features that are poorly transmitted through the electrical CI signal. This “electro-haptic stimulation” improves melody recognition and pitch discrimination, as well as speech-in-noise performance and sound localization. The success of this approach suggests it could also enhance auditory perception in hearing-aid users and other hearing-impaired listeners. This review focuses on the use of haptic stimulation to enhance music perception in hearing-impaired listeners. Music is prevalent throughout everyday life, being critical to media such as film and video games, and often being central to events such as weddings and funerals. It represents the biggest challenge for signal processing, as it is typically an extremely complex acoustic signal, containing multiple simultaneous harmonic and inharmonic sounds. Signal-processing approaches developed for enhancing music perception could therefore have significant utility for other key issues faced by hearing-impaired listeners, such as understanding speech in noisy environments. This review first discusses the limits of music perception in hearing-impaired listeners and the limits of the tactile system. It then discusses the evidence around integration of audio and haptic stimulation in the brain. Next, the features, suitability, and success of current haptic devices for enhancing music perception are reviewed, as well as the signal-processing approaches that could be deployed in future haptic devices. Finally, the cutting-edge technologies that could be exploited for enhancing music perception with haptics are discussed. These include the latest micro motor and driver technology, low-power wireless technology, machine learning, big data, and cloud computing. New approaches for enhancing music perception in hearing-impaired listeners could substantially improve quality of life. Furthermore, effective haptic techniques for providing complex sound information could offer a non-invasive, affordable means for enhancing listening more broadly in hearing-impaired individuals.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Institute of Sound and Vibration Research, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Fletcher MD, Verschuur CA. Electro-Haptic Stimulation: A New Approach for Improving Cochlear-Implant Listening. Front Neurosci 2021; 15:581414. [PMID: 34177440 PMCID: PMC8219940 DOI: 10.3389/fnins.2021.581414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cochlear implants (CIs) have been remarkably successful at restoring speech perception for severely to profoundly deaf individuals. Despite their success, several limitations remain, particularly in CI users' ability to understand speech in noisy environments, locate sound sources, and enjoy music. A new multimodal approach has been proposed that uses haptic stimulation to provide sound information that is poorly transmitted by the implant. This augmenting of the electrical CI signal with haptic stimulation (electro-haptic stimulation; EHS) has been shown to improve speech-in-noise performance and sound localization in CI users. There is also evidence that it could enhance music perception. We review the evidence of EHS enhancement of CI listening and discuss key areas where further research is required. These include understanding the neural basis of EHS enhancement, understanding the effectiveness of EHS across different clinical populations, and the optimization of signal-processing strategies. We also discuss the significant potential for a new generation of haptic neuroprosthetic devices to aid those who cannot access hearing-assistive technology, either because of biomedical or healthcare-access issues. While significant further research and development is required, we conclude that EHS represents a promising new approach that could, in the near future, offer a non-invasive, inexpensive means of substantially improving clinical outcomes for hearing-impaired individuals.
Collapse
Affiliation(s)
- Mark D. Fletcher
- Faculty of Engineering and Physical Sciences, University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
- Faculty of Engineering and Physical Sciences, Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
| | - Carl A. Verschuur
- Faculty of Engineering and Physical Sciences, University of Southampton Auditory Implant Service, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Fletcher MD, Zgheib J, Perry SW. Sensitivity to Haptic Sound-Localization Cues at Different Body Locations. SENSORS (BASEL, SWITZERLAND) 2021; 21:3770. [PMID: 34071729 PMCID: PMC8198414 DOI: 10.3390/s21113770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Cochlear implants (CIs) recover hearing in severely to profoundly hearing-impaired people by electrically stimulating the cochlea. While they are extremely effective, spatial hearing is typically severely limited. Recent studies have shown that haptic stimulation can supplement the electrical CI signal (electro-haptic stimulation) and substantially improve sound localization. In haptic sound-localization studies, the signal is extracted from the audio received by behind-the-ear devices and delivered to each wrist. Localization is achieved using tactile intensity differences (TIDs) across the wrists, which match sound intensity differences across the ears (a key sound localization cue). The current study established sensitivity to across-limb TIDs at three candidate locations for a wearable haptic device, namely: the lower tricep and the palmar and dorsal wrist. At all locations, TID sensitivity was similar to the sensitivity to across-ear intensity differences for normal-hearing listeners. This suggests that greater haptic sound-localization accuracy than previously shown can be achieved. The dynamic range was also measured and far exceeded that available through electrical CI stimulation for all of the locations, suggesting that haptic stimulation could provide additional sound-intensity information. These results indicate that an effective haptic aid could be deployed for any of the candidate locations, and could offer a low-cost, non-invasive means of improving outcomes for hearing-impaired listeners.
Collapse
Affiliation(s)
- Mark D. Fletcher
- Faculty of Engineering and Physical Sciences, Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton SO17 1BJ, UK
- University of Southampton Auditory Implant Service, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK;
| | - Jana Zgheib
- University of Southampton Auditory Implant Service, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK;
| | - Samuel W. Perry
- Faculty of Engineering and Physical Sciences, Institute of Sound and Vibration Research, University of Southampton, University Road, Southampton SO17 1BJ, UK
- University of Southampton Auditory Implant Service, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK;
| |
Collapse
|
12
|
Abstract
Hearing aid and cochlear implant (CI) users often struggle to locate and segregate sounds. The dominant sound-localisation cues are time and intensity differences across the ears. A recent study showed that CI users locate sounds substantially better when these cues are provided through haptic stimulation on each wrist. However, the sensitivity of the wrists to these cues and the robustness of this sensitivity to aging is unknown. The current study showed that time difference sensitivity is much poorer across the wrists than across the ears and declines with age. In contrast, high sensitivity to across-wrist intensity differences was found that was robust to aging. This high sensitivity was observed across a range of stimulation intensities for both amplitude modulated and unmodulated sinusoids and matched across-ear intensity difference sensitivity for normal-hearing individuals. Furthermore, the usable dynamic range for haptic stimulation on the wrists was found to be around four times larger than for CIs. These findings suggest that high-precision haptic sound-localisation can be achieved, which could aid many hearing-impaired listeners. Furthermore, the finding that high-fidelity across-wrist intensity information can be transferred could be exploited in human-machine interfaces to enhance virtual reality and improve remote control of military, medical, or research robots.
Collapse
|
13
|
Fletcher MD. Using haptic stimulation to enhance auditory perception in hearing-impaired listeners. Expert Rev Med Devices 2020; 18:63-74. [PMID: 33372550 DOI: 10.1080/17434440.2021.1863782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hearing-assistive devices, such as hearing aids and cochlear implants, transform the lives of hearing-impaired people. However, users often struggle to locate and segregate sounds. This leads to impaired threat detection and an inability to understand speech in noisy environments. Recent evidence suggests that segregation and localization can be improved by providing missing sound-information through haptic stimulation. AREAS COVERED This article reviews the evidence that haptic stimulation can effectively provide sound information. It then discusses the research and development required for this approach to be implemented in a clinically viable device. This includes discussion of what sound information should be provided and how that information can be extracted and delivered. EXPERT OPINION Although this research area has only recently emerged, it builds on a significant body of work showing that sound information can be effectively transferred through haptic stimulation. Current evidence suggests that haptic stimulation is highly effective at providing missing sound-information to cochlear implant users. However, a great deal of work remains to implement this approach in an effective wearable device. If successful, such a device could offer an inexpensive, noninvasive means of improving educational, work, and social experiences for hearing-impaired individuals, including those without access to hearing-assistive devices.
Collapse
Affiliation(s)
- Mark D Fletcher
- University of Southampton Auditory Implant Service, Southampton, UK.,Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| |
Collapse
|