1
|
Sripusanapan A, Yanpiset P, Sriwichaiin S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Hyperpolarization-activated cyclic nucleotide-gated channel inhibitor in myocardial infarction: Potential benefits beyond heart rate modulation. Acta Physiol (Oxf) 2024; 240:e14085. [PMID: 38230890 DOI: 10.1111/apha.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Myocardial infarction (MI) and its associated complications including ventricular arrhythmias and heart failure are responsible for a significant incidence of morbidity and mortality worldwide. The ensuing cardiomyocyte loss results in neurohormone-driven cardiac remodeling, which leads to chronic heart failure in MI survivors. Ivabradine is a heart rate modulation agent currently used in treatment of chronic heart failure with reduced ejection fraction. The canonical target of ivabradine is the hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in cardiac pacemaker cells. However, in post-MI hearts, HCN can also be expressed ectopically in non-pacemaker cardiomyocytes. There is an accumulation of intriguing evidence to suggest that ivabradine also possesses cardioprotective effects that are independent of heart rate reduction. This review aims to summarize and discuss the reported cardioprotective mechanisms of ivabradine beyond heart rate modulation in myocardial infarction through various molecular mechanisms including the prevention of reactive oxygen species-induced mitochondrial damage, improvement of autophagy system, modulation of intracellular calcium cycling, modification of ventricular electrophysiology, and regulation of matrix metalloproteinases.
Collapse
Affiliation(s)
- Adivitch Sripusanapan
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panat Yanpiset
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Bazoukis G, Hill B, Tse G, Naka KK. Ivabradine: pre-clinical and clinical evidence in the setting of ventricular arrhythmias. Hippokratia 2022; 26:49-54. [PMID: 37188047 PMCID: PMC10177854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ivabradine, an agent lowering the heart rate, acting as a funny current (If) specific inhibitor, is responsible for the sinoatrial node's spontaneous depolarization. According to current guidelines, it is indicated in specific heart failure populations and as a second-line treatment option to improve angina in chronic coronary syndromes. REVIEW OF LITERATURE The role of ivabradine in the setting of ventricular arrhythmias has been studied in both experimental and clinical studies. Specifically, experimental studies have examined the role of ivabradine in acute myocardial ischemia, reperfusion, digitalis-induced ventricular arrhythmias, and catecholaminergic polymorphic ventricular tachycardia showing promising results. In addition, clinical studies have shown a beneficial role of ivabradine in reducing ventricular arrhythmias. Ivabradine reduced premature ventricular contractions in combination with beta-blockers in dilated cardiomyopathy patients. Similarly, in catecholaminergic polymorphic ventricular tachycardia, ivabradine reduced dobutamine-induced premature ventricular complexes and improved ventricular arrhythmias burden. On the other hand, current data show no beneficial role of ivabradine in reducing ventricular arrhythmias in myocardial ischemia. CONCLUSIONS Randomized clinical trials are needed to elucidate the role of ivabradine in reducing the burden of ventricular arrhythmias in various clinical settings. HIPPOKRATIA 2022, 26 (2):49-54.
Collapse
Affiliation(s)
- G Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - B Hill
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - G Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, Kent, United Kingdom
| | - K K Naka
- Second Department of Cardiology and Michaelidion Cardiac Center, Medical School University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Dai Y, Chen Y, Wei G, Zha L, Li X. Ivabradine protects rats against myocardial infarction through reinforcing autophagy via inhibiting PI3K/AKT/mTOR/p70S6K pathway. Bioengineered 2021; 12:1826-1837. [PMID: 33975512 PMCID: PMC8806854 DOI: 10.1080/21655979.2021.1925008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ivabradine (Iva), a heart rate reducing agent that specifically inhibits the pacemaker I(f) ionic current, has been demonstrated to be cardioprotective in many cardiovascular diseases. Autophagy is an evolutionarily conserved metabolic process that regulates cardiac homeostasis. This study is aimed to explore whether autophagy is functionally involved in the cardioprotective effect of Iva in a rat model of myocardial infarction (MI). We observed that Iva treatment (po, 10 mg/kg/day) showed significant recovery on the hemodynamics parameters in MI rats, including left ventricular systolic pressure, left ventricular end diastolic pressure, and maximal ascending/descending rate of left ventricular pressure. Also, Iva treatment dramatically decreased infarct size, inhibited myocardial apoptosis, and reduced the levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in MI rats. Moreover, Iva treatment enhanced autophagy and inhibited PI3K/AKT/mTOR/p70S6K pathway in MI rats. Simultaneously, we observed that autophagy enhancer rapamycin (ip, 10 mg/kg/day) showed similar cardioprotective effects with Iva. Furthermore, we observed that addition of autophagy inhibitor 3-methyladenine (ip, 10 mg/kg/day) counteracted the therapeutic effect of Iva, addressing that Iva attenuated post-MI cardiac injury by enhancing autophagy. In summary, these findings demonstrated that Iva attenuated MI in rats by enhancing autophagy, and PI3K/AKT/mTOR/p70S6K pathway might be involved in the process. Autophagy activation by Iva may be a potential therapeutic strategy for the treatment of MI.
Collapse
Affiliation(s)
- Yingnan Dai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Yeping Chen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Guoqian Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Li Zha
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
4
|
Oknińska M, Paterek A, Zambrowska Z, Mackiewicz U, Mączewski M. Effect of Ivabradine on Cardiac Ventricular Arrhythmias: Friend or Foe? J Clin Med 2021; 10:4732. [PMID: 34682854 PMCID: PMC8537674 DOI: 10.3390/jcm10204732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Life-threatening ventricular arrhythmias, such as ventricular tachycardia and ventricular fibrillation remain an ongoing clinical problem and their prevention and treatment require optimization. Conventional antiarrhythmic drugs are associated with significant proarrhythmic effects that often outweigh their benefits. Another option, the implantable cardioverter defibrillator, though clearly the primary therapy for patients at high risk of ventricular arrhythmias, is costly, invasive, and requires regular monitoring. Thus there is a clear need for new antiarrhythmic treatment strategies. Ivabradine, a heartrate-reducing agent, an inhibitor of HCN channels, may be one of such options. In this review we discuss emerging data from experimental studies that indicate new mechanism of action of this drug and further areas of investigation and potential use of ivabradine as an antiarrhythmic agent. However, clinical evidence is limited, and the jury is still out on effects of ivabradine on cardiac ventricular arrhythmias in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Michał Mączewski
- Centre of Postgraduate Medical Education, Department of Clinical Physiology, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (M.O.); (A.P.); (Z.Z.); (U.M.)
| |
Collapse
|
5
|
Effect of ivabradine on cardiac arrhythmias: Antiarrhythmic or proarrhythmic? Heart Rhythm 2021; 18:1230-1238. [PMID: 33737235 DOI: 10.1016/j.hrthm.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Cardiac arrhythmias are a major source of mortality and morbidity. Unfortunately, their treatment remains suboptimal. Major classes of antiarrhythmic drugs pose a significant risk of proarrhythmia, and their side effects often outweigh their benefits. Therefore, implantable devices remain the only truly effective antiarrhythmic therapy, and new strategies of antiarrhythmic treatment are required. Ivabradine is a selective heart rate-reducing agent, an inhibitor of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, currently approved for treatment of coronary artery disease and chronic heart failure. In this review, we focus on the clinical and basic science evidence for the antiarrhythmic and proarrhythmic effects of ivabradine. We attempt to dissect the mechanisms behind the effects of ivabradine and indicate the focus of future studies.
Collapse
|