1
|
Stokes K, Sun Y, Passaretti P, White H, Goldberg Oppenheimer P. Unveiling the Sorption Properties of Graphene Oxide-M13 Bacteriophage Aerogels for Advanced Sensing and Environmental Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70804-70817. [PMID: 39660982 DOI: 10.1021/acsami.4c16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS). GPA was found to be highly hygroscopic, with a sorption capacity of 0.68 ± 0.02 g/g, double that of conventional desiccant silica gels and 20% higher than GO laminates. This remarkable sorption capacity, along with its sorption kinetics, was influenced by both GPA's morphology and the strong interactions between the water molecules and the functional groups on the GO within GPA. The low hysteresis and stability of GPA during repeated sorption-desorption cycles highlight the reversibility of water sorption. While GPA shows lower capacity for ethanol and acetone, its tuneability presents opportunities for improving acetone sorption, and its ethanol sorption capacity exceeds that of similar carbon-based materials. These findings underscore GPA's capability and versatility in vapor adsorption, paving the way toward its integration into graphene-based devices for sensing applications.
Collapse
Affiliation(s)
- Kate Stokes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Yiwei Sun
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- Paragraf Ltd, Cambridge PB28 3EB, U.K
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Henry White
- BAE-Systems─Air Sector, Buckingham House, FPC 267, Filton, Bristol BS34 7QW, U.K
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham B15 2TH, U.K
| |
Collapse
|
2
|
Stokes K, Sun Y, Thomas JL, Passaretti P, White H, Goldberg Oppenheimer P. Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensors. DISCOVER NANO 2024; 19:152. [PMID: 39289302 PMCID: PMC11408459 DOI: 10.1186/s11671-024-04101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Graphene oxide (GO) and M13 bacteriophage can self-assemble to form ultra-low density porous structures, known as GraPhage13 aerogels (GPA). Due to the insulating nature of GPA and the challenges in producing highly conductive aerogels, it is paramount to explore ways to enhance the conductivity of GPA. Herein, we have developed a method to enhance the conductivity of GPA, via the integration and optimisation of 5 nm and 20 nm diameter gold nanoparticles (AuNPs) into the aerogel structure and systematically analysed the morphology, composition and spectroscopic properties of the resulting GPA-Au nanocomposite. The fabricated GPA-Au nanocomposites exhibited remarkable increases in conductivity, with the integration of 5 nm AuNPs leading to a 53-fold increase compared to GPA, achieving a performance of up to 360 nS/cm, which is within the range suitable for miniaturised semiconductor devices. The mechanism behind the conductivity enhancement was further investigated and attributed to GO-AuNP interactions increasing the carrier density by introducing new energy levels in the GO band gap or shifting its Fermi level towards the conduction band. These findings demonstrate the potential of functionalised AuNPs to significantly improve the electrical properties of GPA, paving the way for their application in gas sensors for biological and chemical detection and a new range of advanced semiconductor devices.
Collapse
Affiliation(s)
- Kate Stokes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yiwei Sun
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Paragraf Limited, Cambridge, PE28 3EB, UK.
| | - Jarrod L Thomas
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Henry White
- BAE-Systems - Air Sector, Buckingham House, FPC 267, Filton, Bristol, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
| |
Collapse
|
3
|
Stokes K, Sun Y, Passaretti P, White H, Goldberg Oppenheimer P. Optimisation of GraPhage13 macro-dispersibility via understanding the pH-dependent ionisation during self-assembly: towards the manufacture of graphene-based nanodevices. NANOSCALE 2023; 15:13304-13312. [PMID: 37519099 PMCID: PMC10433945 DOI: 10.1039/d3nr00778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
GraPhage13 aerogels (GPAs) are micro-porous structures generated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. As GPA fabrication involves the aggregation of GO and M13 in aqueous solution, we aim to understand its dispersibility across a wide pH range. Herein, a novel technique has been developed to relate the ionisation of functional groups to the surface charge, offering insights into the conditions required for GPA fabrication and the mechanism behind its self-assembly. The aggregation of GO and M13 was observed between pH 2-6 and exhibited dependence on the surface charge of the resulting aggregate with the M13 bacteriophage identified as the primary factor contributing to this, whilst originating from the ionisation of its functional groups. In contrast, GO exhibited a lesser impact on the surface charge due to the deprotonation of its carboxylic, enolic and phenolic functional groups at pH 6 and above, which falls outside the required pH range for aggregation. These results enhance our understanding of the GPA self-assembly mechanism, the conditions required for their fabrication and the optimal processability, laying the foundation towards its broad range of applications and the subsequent manufacture of graphene-based nanodevices.
Collapse
Affiliation(s)
- Kate Stokes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Yiwei Sun
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| | - Henry White
- BAE-Systems, Air Sector, Buckingham House, FPC 267, Filton, Bristol, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
4
|
Passaretti P. Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Front Mol Biosci 2022; 9:774097. [PMID: 35372519 PMCID: PMC8965154 DOI: 10.3389/fmolb.2022.774097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Graphene and its derivatives have been widely employed in the manufacturing of novel composite nanomaterials which find applications across the fields of physics, chemistry, engineering and medicine. There are many techniques and strategies employed for the production, functionalization, and assembly of graphene with other organic and inorganic components. These are characterized by advantages and disadvantages related to the nature of the specific components involved. Among many, biomolecules and biopolymers have been extensively studied and employed during the last decade as building blocks, leading to the realization of graphene-based biomaterials owning unique properties and functionalities. In particular, biomolecules like nucleic acids, proteins and enzymes, as well as viruses, are of particular interest due to their natural ability to self-assemble via non-covalent interactions forming extremely complex and dynamic functional structures. The capability of proteins and nucleic acids to bind specific targets with very high selectivity or the ability of enzymes to catalyse specific reactions, make these biomolecules the perfect candidates to be combined with graphenes, and in particular graphene oxide, to create novel 3D nanostructured functional biomaterials. Furthermore, besides the ease of interaction between graphene oxide and biomolecules, the latter can be produced in bulk, favouring the scalability of the resulting nanostructured composite materials. Moreover, due to the presence of biological components, graphene oxide-based biomaterials are more environmentally friendly and can be manufactured more sustainably compared to other graphene-based materials assembled with synthetic and inorganic components. This review aims to provide an overview of the state of the art of 3D graphene-based materials assembled using graphene oxide and biomolecules, for the fabrication of novel functional and scalable materials and devices.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, School of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
Electrochemical sensors have increasingly been linked with terms as modern biomedically effective highly selective and sensitive devices, wearable and wireless technology, portable electronics, smart textiles, energy storage, communication and user-friendly operating systems. The work brings the overview of the current advanced materials and their application strategies for improving performance, miniaturization and portability of sensing devices. It provides the extensive information on recently developed (bio)sensing platforms based on voltammetric, amperometric, potentiometric and impedimetric detection modes including portable, non-invasive, wireless, and self-driven miniaturized devices for monitoring human and animal health. Diagnostics of selected free radical precursors, low molecular biomarkers, nucleic acids and protein-based biomarkers, bacteria and viruses of today's interest is demonstrated.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| | - Ján Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava 81237, Slovakia.
| |
Collapse
|
6
|
Passaretti P, Khan I, Dafforn TR, Goldberg Oppenheimer P. Improvements in the production of purified M13 bacteriophage bio-nanoparticle. Sci Rep 2020; 10:18538. [PMID: 33122639 PMCID: PMC7596064 DOI: 10.1038/s41598-020-75205-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
M13 bacteriophage is a well-established versatile nano-building block, which can be employed to produce novel self-assembled functional materials and devices. Sufficient production and scalability of the M13, often require a large quantity of the virus and thus, improved propagation methods characterised by high capacity and degree of purity are essential. Currently, the 'gold-standard' is represented by infecting Escherichia coli cultures, followed by precipitation with polyethylene glycol (PEG). However, this is considerably flawed by the accumulation of contaminant PEG inside the freshly produced stocks, potentially hampering the reactivity of the individual M13 filaments. Our study demonstrates the effectiveness of implementing an isoelectric precipitation procedure to reduce the residual PEG along with FT-IR spectroscopy as a rapid, convenient and effective analytic validation method to detect the presence of this contaminant in freshly prepared M13 stocks.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Inam Khan
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|