1
|
Bhat M, Shirzad S, Fofana ARK, Gobeil F, Couture R, Vaucher E. Prevention of Inflammation, Neovascularization, and Retinal Dysfunction by Kinin B 1 Receptor Antagonism in a Mouse Model of Age-Related Macular Degeneration. J Clin Med 2023; 12:6213. [PMID: 37834856 PMCID: PMC10573521 DOI: 10.3390/jcm12196213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The kallikrein-kinin system (KKS) contributes to vascular inflammation and neovascularization in age-related macular degeneration (AMD), particularly via the kinin B1 receptor (B1R). The aim of the present study was to determine the protective effects of the topical administration of the B1R antagonist (R-954) on inflammation, neovascularization, and retinal dysfunction in a murine model of neovascular AMD. Choroidal neovascularization (CNV) was induced in C57BL6 mice using an argon laser. A treatment with ocular drops of R-954 (100 μg/15 μL, twice daily in both eyes), or vehicle, was started immediately on day 0, for 7, 14, or 21 days. CNV, invasive microglia, and B1R immunoreactive glial cells, as well as electroretinography alterations, were observed within the retina and choroid of the CNV group but not in the control group. The staining of B1R was abolished by R-954 treatment as well as the proliferation of microglia. R-954 treatment prevented the CNV development (volume: 20 ± 2 vs. 152 ± 5 × 104 µm3 in R-954 vs. saline treatment). R-954 also significantly decreased photoreceptor and bipolar cell dysfunction (a-wave amplitude: -47 ± 20 vs. -34 ± 14 µV and b-wave amplitude: 101 ± 27 vs. 64 ± 17 µV in R-954 vs. saline treatment, day 7) as well as angiogenesis tufts in the retina. These results suggest that self-administration of R-954 by eye-drop treatment could be a promising therapy in AMD to preserve retinal health and vision.
Collapse
Affiliation(s)
- Menakshi Bhat
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (M.B.)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Shima Shirzad
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (M.B.)
| | | | - Fernand Gobeil
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada; (M.B.)
| |
Collapse
|
2
|
Alswailmi FK. A Cross Talk between the Endocannabinoid System and Different Systems Involved in the Pathogenesis of Hypertensive Retinopathy. Pharmaceuticals (Basel) 2023; 16:ph16030345. [PMID: 36986445 PMCID: PMC10058254 DOI: 10.3390/ph16030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
The prognosis of hypertension leads to organ damage by causing nephropathy, stroke, retinopathy, and cardiomegaly. Retinopathy and blood pressure have been extensively discussed in relation to catecholamines of the autonomic nervous system (ANS) and angiotensin II of the renin–angiotensin aldosterone system (RAAS) but very little research has been conducted on the role of the ECS in the regulation of retinopathy and blood pressure. The endocannabinoid system (ECS) is a unique system in the body that can be considered as a master regulator of body functions. It encompasses the endogenous production of its cannabinoids, its degrading enzymes, and functional receptors which innervate and perform various functions in different organs of the body. Hypertensive retinopathy pathologies arise normally due to oxidative stress, ischemia, endothelium dysfunction, inflammation, and an activated renin–angiotensin system (RAS) and catecholamine which are vasoconstrictors in their biological nature. The question arises of which system or agent counterbalances the vasoconstrictors effect of noradrenaline and angiotensin II (Ang II) in normal individuals? In this review article, we discuss the role of the ECS and its contribution to the pathogenesis of hypertensive retinopathy. This review article will also examine the involvement of the RAS and the ANS in the pathogenesis of hypertensive retinopathy and the crosstalk between these three systems in hypertensive retinopathy. This review will also explain that the ECS, which is a vasodilator in its action, either independently counteracts the effect produced with the vasoconstriction of the ANS and Ang II or blocks some of the common pathways shared by the ECS, ANS, and Ang II in the regulation of eye functions and blood pressure. This article concludes that persistent control of blood pressure and normal functions of the eye are maintained either by decreasing systemic catecholamine, ang II, or by upregulation of the ECS which results in the regression of retinopathy induced by hypertension.
Collapse
Affiliation(s)
- Farhan Khashim Alswailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
3
|
Chen G, Zeng L, Yan F, Liu J, Qin M, Wang F, Zhang X. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy. Front Pharmacol 2022; 13:919905. [PMID: 35910364 PMCID: PMC9330024 DOI: 10.3389/fphar.2022.919905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aging-related retinal degeneration can manifest as decreased visual function due to damage to retinal structures and dysfunction in retinal homeostasis. Naringenin, a flavonoid, has beneficial effects in preventing cellular aging, preserving the functionality of photoreceptors, and slowing down visual function loss. However, the role and potential mechanism of naringenin in the aging mouse retina require further investigation. In this study, we evaluated the effects of naringenin on the aging eye using electroretinogram (ERG) and hematoxylin and eosin staining and explored its potential mechanism by western blotting. ERG showed that naringenin increased the amplitude of the a- and b-waves of scotopic 3.0, 10.0, and the a-wave amplitude of photopic 3.0 in the aging mouse retina. Furthermore, administration of naringenin prevented aging-induced retinal degeneration in the total retina, ganglion cell, inner plexiform layer, inner nuclear layer, and outer nuclear layer. The expression of mitochondrial fusion protein two was increased, OPA1 protein expression and the ratio of L-OPA1/S-OPA1 were unchanged, and dynamin-related protein one was decreased in the 12-month-old mice treated with naringenin compared with the 12-month-old mice treated with vehicle. Furthermore, the downregulation of age-related alterations in autophagy was significantly rescued in the aging mice by treatment with naringenin. Taken together, these results suggest that the oral administration of naringenin improves visual function, retinal structure, mitochondrial dynamics, and autophagy in the aging mouse retinas. Naringenin may be a potential dietary supplement for the prevention or treatment of aging-related retinal degeneration.
Collapse
Affiliation(s)
- Guiping Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Feng Yan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
- School of Pharmacy, Nanchang University, Nanchang, JX, China
| | - Jinlong Liu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
- *Correspondence: Xu Zhang,
| |
Collapse
|
4
|
CB 1R, CB 2R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review. Biomed Pharmacother 2022; 150:112981. [PMID: 35468582 DOI: 10.1016/j.biopha.2022.112981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is a complex biological regulatory system. Its expression and functionality have been widely investigated in ocular tissues. Recent data have reported its modulation to be valid in determining an ocular hypotensive and a neuroprotective effect in preclinical animal models of glaucoma. AIM This study aimed to explore the available literature on cannabinoid receptor 1 (CB1R), cannabinoid receptor 2 (CB2R), and transient receptor potential vanilloid 1 (TRPV1) expression in the trabecular meshwork (TM), ciliary body (CB), and retina as well as their ocular hypotensive and neuroprotective effects in preclinical, in vivo, animal glaucoma models. MATERIALS AND METHODS The study adhered to both PRISMA and SYRCLE guidelines. Sixty-nine full-length articles were included in the final analysis. RESULTS Preclinical studies indicated a widespread distribution of CB1R, CB2R, and TRPV1 in the TM, CB, and retina, although receptor-, age-, and species-dependent differences were observed. CB1R and CB2R modulation have been shown to exert ocular hypotensive effects in preclinical models via the regulation of inflow and outflow pathways. Retinal cell neuroprotection has been achieved in several experimental models, mediated by agonists and antagonists of CB1R, CB2R, and TRPV1. DISCUSSION Despite the growing body of preclinical data regarding the expression and modulation of ECS in ocular tissues, the mechanisms responsible for the hypotensive and neuroprotective efficacy exerted by this system remain largely elusive. Research on this topic is advocated to further substantiate the hypothesis that the ECS is a new potential therapeutic target in the context of glaucoma.
Collapse
|
5
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
6
|
Neuroprotection of Retinal Ganglion Cells In Vivo Using the Activation of the Endogenous Cannabinoid Signaling System in Mammalian Eyes. Neuronal Signal 2022; 6:NS20210038. [PMID: 35233292 PMCID: PMC8850705 DOI: 10.1042/ns20210038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Cannabinoid and glutamatergic signaling systems in the human retina coexist and greatly influence one another. Under glaucomatous conditions, excess levels of glutamate accrete in the retinal ganglion cell (RGC) layer. The present study tests the putative neuroprotective effect mediated by cannabinoids at the CB1 and CB2 receptors. In the first experiment, mice were given intravitreal injections of 160 nmol N-methyl-d-aspartic acid (NMDA) in one eye and saline in the paired eye. In the second experiment, both eyes were given NMDA, while one of the two was additionally given the cannabinoid agonist WIN 55,212-2. Ten days later, animals were perfused and the retinae were dissected as wholemounts and stained with Cresyl Violet. Quantitative analysis revealed that 70% of the neurons in the retinal ganglion cell (RGC) layer exposed to NMDA underwent cell death. The addition of the cannabinoid CB1/CB2 agonist doubled the number of neurons surviving the NMDA treatment. These data provide evidence that cannabinoids, either exogenous or endogenous, may be harnessed to provide protection from neurodegenerative diseases, including glaucoma, and from glutamate-induced, and potentially other forms of neurotoxicity, under chronic or acute conditions.
Collapse
|
7
|
The Inhibition of the Degrading Enzyme Fatty Acid Amide Hydrolase Alters the Activity of the Cone System in the Vervet Monkey Retina. Brain Sci 2021; 11:brainsci11111418. [PMID: 34827417 PMCID: PMC8615683 DOI: 10.3390/brainsci11111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Recent studies using full-field electroretinography (ffERG) that triggers a non-specific mass response generated by several retinal sources have attributed an important role for cannabinoid receptors in mediating vision in primates. Specific cone-mediated responses evoked through the photopic flicker ERG appear to be a better way to validate the assumption that endogenous cannabinoids modulate the cone pathway, since FAAH is mainly expressed in the vervet monkey cone photoreceptors. The aim of this study is two-fold: (1) to use the photopic flicker ERG to target the cone pathway specifically, and (2) use URB597 as a selective inhibitor of the endocannabinoid degrading enzyme Fatty Acid Amide Hydrolase (FAAH) to enhance the levels of fatty acid amides, particularly anandamide. We recorded ERGs under four different flicker frequencies (15, 20, 25, and 30 Hz) in light-adapted conditions after intravitreal injections of URB597. Our results show that intravitreal injections of URB597, compared to the vehicle DMSO, increased significantly ffERG amplitudes at 30 Hz, a frequency that solely recruits cone activity. However, at 15 Hz, a frequency that activates both rods and cones, no significant difference was found in the ERG response amplitude. Additionally, we found no differences in implicit times after URB597 injections compared to DMSO vehicle. These results support the role of molecules degraded by FAAH in cone-mediated vision in non-human primates.
Collapse
|
8
|
Heinbockel T, Straiker A. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits. Front Neural Circuits 2021; 15:662349. [PMID: 34305536 PMCID: PMC8294086 DOI: 10.3389/fncir.2021.662349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | - Alex Straiker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
9
|
Tkatchenko TV, Tkatchenko AV. Genetic network regulating visual acuity makes limited contribution to visually guided eye emmetropization. Genomics 2021; 113:2780-2792. [PMID: 34147636 DOI: 10.1016/j.ygeno.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
During postnatal development, the eye undergoes a refinement process whereby optical defocus guides eye growth towards sharp vision in a process of emmetropization. Optical defocus activates a signaling cascade originating in the retina and propagating across the back of the eye to the sclera. Several observations suggest that visual acuity might be important for optical defocus detection and processing in the retina; however, direct experimental evidence supporting or refuting the role of visual acuity in refractive eye development is lacking. Here, we used genome-wide transcriptomics to determine the relative contribution of the retinal genetic network regulating visual acuity to the signaling cascade underlying visually guided eye emmetropization. Our results provide evidence that visual acuity is regulated at the level of molecular signaling in the retina by an extensive genetic network. The genetic network regulating visual acuity makes relatively small contribution to the signaling cascade underlying refractive eye development. This genetic network primarily affects baseline refractive eye development and this influence is primarily facilitated by the biological processes related to melatonin signaling, nitric oxide signaling, phototransduction, synaptic transmission, and dopamine signaling. We also observed that the visual-acuity-related genes associated with the development of human myopia are chiefly involved in light perception and phototransduction. Our results suggest that the visual-acuity-related genetic network primarily contributes to the signaling underlying baseline refractive eye development, whereas its impact on visually guided eye emmetropization is modest.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|