1
|
Park SJ, Kim KW, Lee EJ. Gut-brain axis and environmental factors in Parkinson's disease: bidirectional link between disease onset and progression. Neural Regen Res 2025; 20:3416-3429. [PMID: 39688568 PMCID: PMC11974660 DOI: 10.4103/nrr.nrr-d-24-00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease has long been considered a disorder that primarily affects the brain, as it is defined by the dopaminergic neurodegeneration in the substantia nigra and the brain accumulation of Lewy bodies containing α-synuclein protein. In recent decades, however, accumulating research has revealed that Parkinson's disease also involves the gut and uncovered an intimate and important bidirectional link between the brain and the gut, called the "gut-brain axis." Numerous clinical studies demonstrate that gut dysfunction frequently precedes motor symptoms in Parkinson's disease patients, with findings including impaired intestinal permeability, heightened inflammation, and distinct gut microbiome profiles and metabolites. Furthermore, α-synuclein deposition has been consistently observed in the gut of Parkinson's disease patients, suggesting a potential role in disease initiation. Importantly, individuals with vagotomy have a reduced Parkinson's disease risk. From these observations, researchers have hypothesized that α-synuclein accumulation may initiate in the gut and subsequently propagate to the central dopaminergic neurons through the gut-brain axis, leading to Parkinson's disease. This review comprehensively examines the gut's involvement in Parkinson's disease, focusing on the concept of a gut-origin for the disease. We also examine the interplay between altered gut-related factors and the accumulation of pathological α-synuclein in the gut of Parkinson's disease patients. Given the accessibility of the gut to both dietary and pharmacological interventions, targeting gut-localized α-synuclein represents a promising avenue for developing effective Parkinson's disease therapies.
Collapse
Affiliation(s)
- Soo Jung Park
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Kyung Won Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
2
|
Shiraz MG, Nielsen J, Widmann J, Chung KHK, Davis TP, Rasmussen C, Scavenius C, Enghild JJ, Martin-Gallausiaux C, Singh Y, Javed I, Otzen DE. Young rat microbiota extracts strongly inhibit fibrillation of α-synuclein and protect neuroblastoma cells and zebrafish against α-synuclein toxicity. Mol Cells 2025; 48:100161. [PMID: 39603509 PMCID: PMC11699742 DOI: 10.1016/j.mocell.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The clinical manifestations of Parkinson's disease (PD) are driven by aggregation of α-Synuclein (α-Syn) in the brain. However, there is increasing evidence that PD may be initiated in the gut and thence spread to the brain, eg, via the vagus nerve. Many studies link PD to changes in the gut microbiome, and bacterial amyloid has been shown to stimulate α-Syn aggregation. Yet, we are not aware of any studies reporting on a direct connection between microbiome components and α-Syn aggregation. Here, we report that soluble extract from the gut microbiome of the rats, particularly young rats transgenic for PD, shows a remarkably strong ability to inhibit in vitro α-Syn aggregation and keep it natively unfolded and monomeric. The active component(s) are heat-labile molecule(s) of around 30- to 100-kDa size, which are neither nucleic acid nor lipid. Proteomic analysis identified several proteins whose concentrations in different rat samples correlated with the samples' anti-inhibitory activity, while a subsequent pull-down assay linked the protein chaperone DnaK with the inhibitory activity of young rat's microbiome, confirmed in subsequent in vitro assays. Remarkably, the microbiome extracts also protected neuroblastoma SH-SY5Y cells and zebrafish embryos against α-Syn toxicity. Our study sheds new light on the gut microbiome as a potential source of protection against PD and opens up for new microbiome-based therapeutic strategies.
Collapse
Affiliation(s)
- Mohaddeseh Ghorbani Shiraz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus Centrum, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus Centrum, Denmark
| | - Jeremias Widmann
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus Centrum, Denmark
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Casper Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus Centrum, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus Centrum, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus Centrum, Denmark
| | - Camille Martin-Gallausiaux
- Evolutionary Biology of the Microbial Cell - Biologie Evolutive de la Cellule Microbienne Institut Pasteur, 28 Rue du Docteur Roux, Paris 75724 Cedex 15, France
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076 Tübingen, Germany; NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus Centrum, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus Centrum, Denmark.
| |
Collapse
|
3
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
4
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
5
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Singh Y, Trautwein C, Romani J, Salker MS, Neckel PH, Fraccaroli I, Abeditashi M, Woerner N, Admard J, Dhariwal A, Dueholm MKD, Schäfer KH, Lang F, Otzen DE, Lashuel HA, Riess O, Casadei N. Overexpression of human alpha-Synuclein leads to dysregulated microbiome/metabolites with ageing in a rat model of Parkinson disease. Mol Neurodegener 2023; 18:44. [PMID: 37403161 DOI: 10.1186/s13024-023-00628-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclein (α-Syn) protein. Consequently, there is growing interest in understanding how the gut (commensal) microbiome can regulate α-Syn accumulation, as this could potentially lead to PD. METHODS We used 16S rRNA and shotgun sequencing to characterise microbial diversity. 1H-NMR was employed to understand the metabolite production and intestinal inflammation estimated using ELISA and RNA-sequencing from feces and the intestinal epithelial layer respectively. The Na+ channel current and gut permeability were measured using an Ussing chamber. Immunohistochemistry and immunofluorescence imaging were applied to detect the α-Syn protein. LC-MS/MS was used for characterization of proteins from metabolite treated neuronal cells. Finally, Metascape and Ingenuity Pathway Analysis (IPA) bioinformatics tools were used for identification of dysregulated pathways. RESULTS We studied a transgenic (TG) rat model overexpressing the human SNCA gene and found that a progressive gut microbial composition alteration characterized by the reduction of Firmicutes to Bacteroidetes ratio could be detected in the young TG rats. Interestingly, this ratio then increased with ageing. The dynamics of Lactobacillus and Alistipes were monitored and reduced Lactobacillus and increased Alistipes abundance was discerned in ageing TG rats. Additionally, the SNCA gene overexpression resulted in gut α-Syn protein expression and increased with advanced age. Further, older TG animals had increased intestinal inflammation, decreased Na+ current and a robust alteration in metabolite production characterized by the increase of succinate levels in feces and serum. Manipulation of the gut bacteria by short-term antibiotic cocktail treatment revealed a complete loss of short-chain fatty acids and a reduction in succinate levels. Although antibiotic cocktail treatment did not change α-Syn expression in the enteric nervous system of the colon, however, reduced α-Syn expression was detected in the olfactory bulbs (forebrain) of the TG rats. CONCLUSION Our data emphasize that the gut microbiome dysbiosis synchronous with ageing leads to a specific alteration of gut metabolites and can be modulated by antibiotics which may affect PD pathology.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- Research Institute of Women's Health, University of Tübingen, Calwerstaße 7/6, 72076, Tübingen, Germany.
| | - Christoph Trautwein
- Werner Siemens Imaging Centre (WSIC), Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Joan Romani
- School of Life Sciences, Institute of Bioengineering, Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), SV LMNN Station 19, 1015 CH, Lausanne, Switzerland
| | - Madhuri S Salker
- Research Institute of Women's Health, University of Tübingen, Calwerstaße 7/6, 72076, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstraße 3, 72074, Tübingen, Germany
| | - Isabel Fraccaroli
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Mahkameh Abeditashi
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Nils Woerner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Achal Dhariwal
- Institute of Oral Biology, University of Oslo, Sognsvannsveien 10, 0316, Oslo, Norway
| | - Morten K D Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Karl-Herbert Schäfer
- Enteric Nervous System Working Group, University of Applied Sciences Kaiserslautern, Zweibrücken Campus, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Florian Lang
- Institute of Vegetative Physiology, University of Tübingen, Wilhelmstaße 56, 72074, Tübingen, Germany
| | - Daniel E Otzen
- Interdisciplinary Naonscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hilal A Lashuel
- School of Life Sciences, Institute of Bioengineering, Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), SV LMNN Station 19, 1015 CH, Lausanne, Switzerland
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
| |
Collapse
|
7
|
Ortega Moreno L, Bagues A, Martínez V, Abalo R. New Pieces for an Old Puzzle: Approaching Parkinson's Disease from Translatable Animal Models, Gut Microbiota Modulation, and Lipidomics. Nutrients 2023; 15:2775. [PMID: 37375679 DOI: 10.3390/nu15122775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by disabling motor alterations that are diagnosed at a relatively late stage in its development, and non-motor symptoms, including those affecting the gastrointestinal tract (mainly constipation), which start much earlier than the motor symptoms. Remarkably, current treatments only reduce motor symptoms, not without important drawbacks (relatively low efficiency and impactful side effects). Thus, new approaches are needed to halt PD progression and, possibly, to prevent its development, including new therapeutic strategies that target PD etiopathogeny and new biomarkers. Our aim was to review some of these new approaches. Although PD is complex and heterogeneous, compelling evidence suggests it might have a gastrointestinal origin, at least in a significant number of patients, and findings in recently developed animal models strongly support this hypothesis. Furthermore, the modulation of the gut microbiome, mainly through probiotics, is being tested to improve motor and non-motor symptoms and even to prevent PD. Finally, lipidomics has emerged as a useful tool to identify lipid biomarkers that may help analyze PD progression and treatment efficacy in a personalized manner, although, as of today, it has only scarcely been applied to monitor gut motility, dysbiosis, and probiotic effects in PD. Altogether, these new pieces should be helpful in solving the old puzzle of PD.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Ana Bagues
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
8
|
Wang J, Zhang X, Li M, Li R, Zhao M. Shifts in Intestinal Metabolic Profile Among Kidney Transplantation Recipients with Antibody-Mediated Rejection. Ther Clin Risk Manag 2023; 19:207-217. [PMID: 36896026 PMCID: PMC9990454 DOI: 10.2147/tcrm.s401414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is emerging as the main cause of graft loss after kidney transplantation. Our previous study revealed the gut microbiota alternation associated with AMR in kidney transplant recipients, which was predicted to affect the metabolism-related pathways. Methods To further investigate the shifts in intestinal metabolic profile among kidney transplantation recipients with AMR, fecal samples from kidney transplant recipients and patients with end-stage renal disease (ESRD) were subjected to untargeted LC-MS-based metabolomics. Results A total of 86 individuals were enrolled in this study, including 30 kidney transplantation recipients with AMR, 35 kidney transplant recipients with stable renal function (KT-SRF), and 21 participants with ESRD. Fecal metabolome in patients with ESRD and kidney transplantation recipients with KT-SRF were parallelly detected as controls. Our results demonstrated that intestinal metabolic profile of patients with AMR differed significantly from those with ESRD. A total of 172 and 25 differential metabolites were identified in the KT-AMR group, when compared with the ESRD group and the KT-SRF group, respectively, and 14 were common to the pairwise comparisons, some of which had good discriminative ability for AMR. KEGG pathway enrichment analysis demonstrated that the different metabolites between the KT-AMR and ESRD groups or between KT-AMR and KT-SRF groups were significantly enriched in 33 or 36 signaling pathways, respectively. Conclusion From the metabolic point of view, our findings may provide key clues for developing effective diagnostic biomarkers and therapeutic targets for AMR after kidney transplantation.
Collapse
Affiliation(s)
- Junpeng Wang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengjun Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ruoying Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
10
|
Sadler MC, Auwerx C, Lepik K, Porcu E, Kutalik Z. Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases. Nat Commun 2022; 13:7559. [PMID: 36477627 PMCID: PMC9729239 DOI: 10.1038/s41467-022-35196-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
High-dimensional omics datasets provide valuable resources to determine the causal role of molecular traits in mediating the path from genotype to phenotype. Making use of molecular quantitative trait loci (QTL) and genome-wide association study (GWAS) summary statistics, we propose a multivariable Mendelian randomization (MVMR) framework to quantify the proportion of the impact of the DNA methylome (DNAm) on complex traits that is propagated through the assayed transcriptome. Evaluating 50 complex traits, we find that on average at least 28.3% (95% CI: [26.9%-29.8%]) of DNAm-to-trait effects are mediated through (typically multiple) transcripts in the cis-region. Several regulatory mechanisms are hypothesized, including methylation of the promoter probe cg10385390 (chr1:8'022'505) increasing the risk for inflammatory bowel disease by reducing PARK7 expression. The proposed integrative framework can be extended to other omics layers to identify causal molecular chains, providing a powerful tool to map and interpret GWAS signals.
Collapse
Affiliation(s)
- Marie C Sadler
- University Center for Primary Care and Public Health, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| | - Chiara Auwerx
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Kaido Lepik
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Eleonora Porcu
- University Center for Primary Care and Public Health, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- University Center for Primary Care and Public Health, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Arena G, Sharma K, Agyeah G, Krüger R, Grünewald A, Fitzgerald JC. Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Curr Neurol Neurosci Rep 2022; 22:427-440. [PMID: 35674870 PMCID: PMC9174445 DOI: 10.1007/s11910-022-01207-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Neuroinflammation plays a significant role in Parkinson's disease (PD) etiology along with mitochondrial dysfunction and impaired proteostasis. In this context, mechanisms related to immune response can act as modifiers at different steps of the neurodegenerative process and justify the growing interest in anti-inflammatory agents as potential disease-modifying treatments in PD. The discovery of inherited gene mutations in PD has allowed researchers to develop cellular and animal models to study the mechanisms of the underlying biology, but the original cause of neuroinflammation in PD is still debated to date. RECENT FINDINGS Cell autonomous alterations in neuronal cells, including mitochondrial damage and protein aggregation, could play a role, but recent findings also highlighted the importance of intercellular communication at both local and systemic level. This has given rise to debate about the role of non-neuronal cells in PD and reignited intense research into the gut-brain axis and other non-neuronal interactions in the development of the disease. Whatever the original trigger of neuroinflammation in PD, what appears quite clear is that the aberrant activation of glial cells and other components of the immune system creates a vicious circle in which neurodegeneration and neuroinflammation nourish each other. In this review, we will provide an up-to-date summary of the main cellular alterations underlying neuroinflammation in PD, including those induced by environmental factors (e.g. the gut microbiome) and those related to the genetic background of affected patients. Starting from the lesson provided by familial forms of PD, we will discuss pathophysiological mechanisms linked to inflammation that could also play a role in idiopathic forms. Finally, we will comment on the potential clinical translatability of immunobiomarkers identified in PD patient cohorts and provide an update on current therapeutic strategies aimed at overcoming or preventing inflammation in PD.
Collapse
Affiliation(s)
- G Arena
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - K Sharma
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - G Agyeah
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - R Krüger
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - A Grünewald
- Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - J C Fitzgerald
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Klæstrup IH, Just MK, Holm KL, Alstrup AKO, Romero-Ramos M, Borghammer P, Van Den Berge N. Impact of aging on animal models of Parkinson's disease. Front Aging Neurosci 2022; 14:909273. [PMID: 35966779 PMCID: PMC9366194 DOI: 10.3389/fnagi.2022.909273] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Aging is the biggest risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. Several animal models have been developed to explore the pathophysiology underlying neurodegeneration and the initiation and spread of alpha-synuclein-related PD pathology, and to investigate biomarkers and therapeutic strategies. However, bench-to-bedside translation of preclinical findings remains suboptimal and successful disease-modifying treatments remain to be discovered. Despite aging being the main risk factor for developing idiopathic PD, most studies employ young animals in their experimental set-up, hereby ignoring age-related cellular and molecular mechanisms at play. Consequently, studies in young animals may not be an accurate reflection of human PD, limiting translational outcomes. Recently, it has been shown that aged animals in PD research demonstrate a higher susceptibility to developing pathology and neurodegeneration, and present with a more disseminated and accelerated disease course, compared to young animals. Here we review recent advances in the investigation of the role of aging in preclinical PD research, including challenges related to aged animal models that are limiting widespread use. Overall, current findings indicate that the use of aged animals may be required to account for age-related interactions in PD pathophysiology. Thus, although the use of older animals has disadvantages, a model that better represents clinical disease within the elderly would be more beneficial in the long run, as it will increase translational value and minimize the risk of therapies failing during clinical studies. Furthermore, we provide recommendations to manage the challenges related to aged animal models.
Collapse
Affiliation(s)
- Ida Hyllen Klæstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | | | - Aage Kristian Olsen Alstrup
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Chen SJ, Lin CH. Gut microenvironmental changes as a potential trigger in Parkinson's disease through the gut-brain axis. J Biomed Sci 2022; 29:54. [PMID: 35897024 PMCID: PMC9327249 DOI: 10.1186/s12929-022-00839-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease attributed to the synergistic effects of genetic risk and environmental stimuli. Although PD is characterized by motor dysfunction resulting from intraneuronal alpha-synuclein accumulations, termed Lewy bodies, and dopaminergic neuronal degeneration in the substantia nigra, multiple systems are involved in the disease process, resulting in heterogenous clinical presentation and progression. Genetic predisposition to PD regarding aberrant immune responses, abnormal protein aggregation, autophagolysosomal impairment, and mitochondrial dysfunction leads to vulnerable neurons that are sensitive to environmental triggers and, together, result in neuronal degeneration. Neuropathology studies have shown that, at least in some patients, Lewy bodies start from the enteric nervous system and then spread to the central dopaminergic neurons through the gut-brain axis, suggesting the contribution of an altered gut microenvironment in the pathogenesis of PD. A plethora of evidence has revealed different gut microbiomes and gut metabolites in patients with PD compared to unaffected controls. Chronic gut inflammation and impaired intestinal barrier integrity have been observed in human PD patients and mouse models of PD. These observations led to the hypothesis that an altered gut microenvironment is a potential trigger of the PD process in a genetically susceptible host. In this review, we will discuss the complex interplay between genetic factors and gut microenvironmental changes contributing to PD pathogenesis.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, Chen F, Ling Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson's Disease. Front Immunol 2022; 13:937555. [PMID: 35812394 PMCID: PMC9263276 DOI: 10.3389/fimmu.2022.937555] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by motor dysfunction. Growing evidence has demonstrated that gut dysbiosis is involved in the occurrence, development and progression of PD. Numerous clinical trials have identified the characteristics of the changed gut microbiota profiles, and preclinical studies in PD animal models have indicated that gut dysbiosis can influence the progression and onset of PD via increasing intestinal permeability, aggravating neuroinflammation, aggregating abnormal levels of α-synuclein fibrils, increasing oxidative stress, and decreasing neurotransmitter production. The gut microbiota can be considered promising diagnostic and therapeutic targets for PD, which can be regulated by probiotics, psychobiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, diet modifications, and Chinese medicine. This review summarizes the recent studies in PD-associated gut microbiota profiles and functions, the potential roles, and mechanisms of gut microbiota in PD, and gut microbiota-targeted interventions for PD. Deciphering the underlying roles and mechanisms of the PD-associated gut microbiota will help interpret the pathogenesis of PD from new perspectives and elucidate novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Manlian Zhu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiru Ye
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Feng Chen
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Pap D, Veres-Székely A, Szebeni B, Vannay Á. PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int J Mol Sci 2022; 23:6626. [PMID: 35743072 PMCID: PMC9223539 DOI: 10.3390/ijms23126626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly known that Parkinson's (PD) and Alzheimer's (AD) diseases occur more frequently in patients with inflammatory gastrointestinal diseases including inflammatory bowel (IBD) or celiac disease, indicating a pathological link between them. Although epidemiological observations suggest the existence of the gut-brain axis (GBA) involving systemic inflammatory and neural pathways, little is known about the exact molecular mechanisms. Parkinson's disease 7 (PARK7/DJ-1) is a multifunctional protein whose protective role has been widely demonstrated in neurodegenerative diseases, including PD, AD, or ischemic stroke. Recent studies also revealed the importance of PARK7/DJ-1 in the maintenance of the gut microbiome and also in the regulation of intestinal inflammation. All these findings suggest that PARK7/DJ-1 may be a link and also a potential therapeutic target in gut and brain diseases. In this review, therefore, we discuss our current knowledge about PARK7/DJ-1 in the context of GBA diseases.
Collapse
Grants
- TKP2020-NKA-09 Ministry for Innovation and Technology, Hungary
- TKP2020-NKA-13 Ministry for Innovation and Technology, Hungary
- K125470 National Research, Development and Innovation Office (NKFI), Hungary
- STIA-KFI-2020 Semmelweis Science and Innovation Fund, Hungary
- 20382-3/2018 FEKUTSTRAT National Research, Development and Innovation Office, Hungary
- STIA-KFI-2021 (1492-15/IKP/2022) Semmelweis Science and Innovation Fund, Hungary
- K124549 National Research, Development and Innovation Office (NKFI), Hungary
Collapse
Affiliation(s)
- Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
16
|
Chen SJ, Chen CC, Liao HY, Wu YW, Liou JM, Wu MS, Kuo CH, Lin CH. Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1219-1230. [PMID: 35342048 DOI: 10.3233/jpd-223179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Emerging evidence suggests that gut dysbiosis contributes to Parkinson's disease (PD) by signaling through microbial metabolites. Hippuric acid (HA), indole derivatives, and secondary bile acids are among the most common gut metabolites. OBJECTIVE To examine the relationship of systemic concentrations of these microbial metabolites associated with changes of gut microbiota, PD status, and severity of PD. METHODS We enrolled 56 patients with PD and 43 age- and sex-matched healthy participants. Motor and cognitive severity were assessed with Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III motor score and the Mini-Mental State Examination (MMSE), respectively. Plasma concentrations of targeted gut metabolites were measured with liquid chromatography-tandem mass spectrometry. Gut microbiota was analyzed with shotgun metagenomic sequencing. RESULTS Compared with controls, PD patients had significantly higher plasma levels of HA, indole-3-propionic acid (IPA), deoxycholic acid (DCA), and glycodeoxycholic acid (GDCA). After adjustment for age and sex in a multivariate logistic regression analysis, plasma levels of HA (odds ratio [OR] 3.21, p < 0.001), IPA (OR 2.59, p = 0.031), and GDCA (OR 2.82, p = 0.036) were associated with positive PD status. Concentrations of these gut metabolites did not correlate with MDS-UPDRS part III score or MMSE after adjustment for confounders. Microbial metabolite levels were associated with the relative abundance of pro-inflammatory gut bacteria. CONCLUSION Aberrant gut microbial metabolites of HA, indole derivatives and secondary bile acids associated with specific gut microbiota changes were observed in patients with PD.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yu Liao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,The Metabolomics Core Laboratory, NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Magistrelli L, Contaldi E, Vignaroli F, Gallo S, Colombatto F, Cantello R, Comi C. Immune Response Modifications in the Genetic Forms of Parkinson's Disease: What Do We Know? Int J Mol Sci 2022; 23:ijms23073476. [PMID: 35408836 PMCID: PMC8998358 DOI: 10.3390/ijms23073476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons in the pars compacta of the midbrain substantia nigra. PD pathophysiology is complex, multifactorial, and not fully understood yet. Nonetheless, recent data show that immune system hyperactivation with concomitant production of pro-inflammatory cytokines, both in the central nervous system (CNS) and the periphery, is a signature of idiopathic PD. About 5% of PD patients present an early onset with a determined genetic cause, with either autosomal dominant or recessive inheritance. The involvement of immunity in the genetic forms of PD has been a matter of interest in several recent studies. In this review, we will summarize the main findings of this new and promising field of research.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy;
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Francesca Vignaroli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Silvia Gallo
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Federico Colombatto
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Roberto Cantello
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
- Correspondence:
| |
Collapse
|
18
|
Roux-En-Y Gastric Bypass (RYGB) Surgery during High Liquid Sucrose Diet Leads to Gut Microbiota-Related Systematic Alterations. Int J Mol Sci 2022; 23:ijms23031126. [PMID: 35163046 PMCID: PMC8835548 DOI: 10.3390/ijms23031126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) surgery has been proven successful in weight loss and improvement of co-morbidities associated with obesity. Chronic complications such as malabsorption of micronutrients in up to 50% of patients underline the need for additional therapeutic approaches. We investigated systemic RYGB surgery effects in a liquid sucrose diet-induced rat obesity model. After consuming a diet supplemented with high liquid sucrose for eight weeks, rats underwent RYGB or control sham surgery. RYGB, sham pair-fed, and sham ad libitum-fed groups further continued on the diet after recovery. Notable alterations were revealed in microbiota composition, inflammatory markers, feces, liver, and plasma metabolites, as well as in brain neuronal activity post-surgery. Higher fecal 4-aminobutyrate (GABA) correlated with higher Bacteroidota and Enterococcus abundances in RYGB animals, pointing towards the altered enteric nervous system (ENS) and gut signaling. Favorable C-reactive protein (CRP), serine, glycine, and 3-hydroxybutyrate plasma profiles in RYGB rats were suggestive of reverted obesity risk. The impact of liquid sucrose diet and caloric restriction mainly manifested in fatty acid changes in the liver. Our multi-modal approach reveals complex systemic changes after RYGB surgery and points towards potential therapeutic targets in the gut-brain system to mimic the surgery mode of action.
Collapse
|
19
|
Huang Z, Shi X, Zhou G, Li C. Dietary soy, pork and chicken proteins induce distinct nitrogen metabolism in rat liver. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 3:100050. [PMID: 35415657 PMCID: PMC8991958 DOI: 10.1016/j.fochms.2021.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/14/2022]
Abstract
Dietary amino acid composition affected nitrogen metabolism in rat liver. Amino acid metabolizing enzymes were downregulated by meat protein diets. Ribosome assembly and protein synthesis were regulated by diet by mTOR pathway.
Diets have been shown to alter metabolism and gene expression. However, few data are available about changes in gene expression in liver after intake of different meat protein diets. This work aimed to explore the long-term effects of protein source on liver metabolic enzymes. Rats were fed protein diets for 90 days to study whether intake of chicken and pork protein diets promoted gene expression involved in hepatic metabolism. Liver proteome profiles were measured by iTRAQ labeling and LC–ESI–MS/MS. Chicken protein diet induced higher level of serum amino acids in rats than soy protein. Amino acid metabolizing enzymes were downregulated by pork and chicken protein diets compared with soy protein diet. Intake of meat protein diets downregulated enzymes involved in protein synthesis, disulfide bond formation, signal peptide addition, transport, localization, degradation and glycosylation modification, but upregulated enzymes involved in prolyl cis–trans isomerization for protein synthesis. Protein diets from different sources affected the amino acid supply, and further influenced ribosome assembly and protein synthesis through mTOR signaling pathway.
Collapse
|