1
|
Mercedi A, Gentili G, Poli V, Philipp C, Rosso B, Lavagnolo MC, Hallanger I, Corami F, Meneghetti M, Litti L. Selective Labeling of Small Microplastics with SERS-Tags Based on Gold Nanostars: Method Optimization Using Polystyrene Beads and Application in Environmental Samples. ACS OMEGA 2024; 9:40821-40831. [PMID: 39371984 PMCID: PMC11447870 DOI: 10.1021/acsomega.4c05693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Microplastics pollution is being unanimously recognized as a global concern in all environments. Routine analysis protocols foresee that samples, which are supposed to contain up to hundreds of microplastics, are eventually collected on nanoporous filters and inspected by microspectroscopy techniques like micro-FTIR or micro-Raman. All particles, whether made of plastic or not, must be inspected one by one to detect and count microplastics. This makes it extremely time-consuming, especially when Raman is adopted, and indeed mandatory for the small microplastic fraction. Inspired by the principles of cell labeling, the present study represents the first report in which gold nanostars (AuNS) are functionalized to act as SERS-tags and used to selectively couple to microplastics. The intrinsic bright signals provided by the SERS-tags are used to run a quick scan over a wide filter area with roughly 2 orders of magnitude shorter analysis time in respect of state of the art in micro- and nanoplastics detection by μ-Raman. The applicability of the present protocol has been validated at the proof-of-concept level on both fabricated and real offshore marine samples. It is indeed worth mentioning that a SERS-based approach is herein successfully applied on filters and protocols routinely adopted in environmental microplastics monitoring, paving the way for future implementations and applications.
Collapse
Affiliation(s)
- Anna Mercedi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giulia Gentili
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Valentina Poli
- DICEA,
Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | | | - Beatrice Rosso
- Institute
of Polar Sciences, CNR-ISP, Campus Scientifico, Via Torino 155, 30172 Venezia-Mestre, Italy
- Department
of Environmental Sciences, Informatics, and Statistics, DAIS, Campus
Scientifico, Ca’Foscari University
of Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Maria Cristina Lavagnolo
- DICEA,
Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy
| | | | - Fabiana Corami
- Institute
of Polar Sciences, CNR-ISP, Campus Scientifico, Via Torino 155, 30172 Venezia-Mestre, Italy
- Department
of Environmental Sciences, Informatics, and Statistics, DAIS, Campus
Scientifico, Ca’Foscari University
of Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Moreno Meneghetti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Lucio Litti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Alieva R, Sokolova S, Zhemchuzhina N, Pankin D, Povolotckaia A, Novikov V, Kuznetsov S, Gulyaev A, Moskovskiy M, Zavyalova E. A Surface-Enhanced Raman Spectroscopy-Based Aptasensor for the Detection of Deoxynivalenol and T-2 Mycotoxins. Int J Mol Sci 2024; 25:9534. [PMID: 39273480 PMCID: PMC11394982 DOI: 10.3390/ijms25179534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The quality of food is one of the emergent points worldwide. Many microorganisms produce toxins that are harmful for human and animal health. In particular, mycotoxins from Fusarium fungi are strictly controlled in cereals. Simple and robust biosensors are necessary for 'in field' control of the crops and processed products. Nucleic acid-based sensors (aptasensors) offer a new era of point-of-care devices with excellent stability and limits of detection for a variety of analytes. Here we report the development of a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the detection of T-2 and deoxynivalenol in wheat grains. The aptasensor was able to detect as low as 0.17% of pathogen fungi in the wheat grains. The portable devices, inexpensive SERS substrate, and short analysis time encourage further implementation of the aptasensors outside of highly equipped laboratories.
Collapse
Affiliation(s)
- Rugiya Alieva
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, Russia
| | - Svetlana Sokolova
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, Russia
| | - Natalia Zhemchuzhina
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy 143050, Russia
| | - Dmitrii Pankin
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anastasia Povolotckaia
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| | - Vasiliy Novikov
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Kuznetsov
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Anatoly Gulyaev
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| | - Maksim Moskovskiy
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| | - Elena Zavyalova
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
| |
Collapse
|
3
|
Sloan-Dennison S, Wallace GQ, Hassanain WA, Laing S, Faulds K, Graham D. Advancing SERS as a quantitative technique: challenges, considerations, and correlative approaches to aid validation. NANO CONVERGENCE 2024; 11:33. [PMID: 39154073 PMCID: PMC11330436 DOI: 10.1186/s40580-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique. This is due to the variations that are observed in SERS measurements, mainly caused by poorly characterised SERS substrates, lack of universal calibration methods and uncorrelated results. To convince the wider scientific community that SERS should be a routinely used analytical technique, the field is now focusing on methods that will increase the reproducibility of the SERS signals and how to validate the results with more well-established techniques. This review explores the difficulties experienced by SERS users, the methods adopted to reduce variation and suggestions of best practices and strategies that should be adopted if one is to achieve absolute quantification.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Waleed A Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
4
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
5
|
Wang C, Weng G, Li J, Zhu J, Zhao J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal Chim Acta 2024; 1296:342291. [PMID: 38401925 DOI: 10.1016/j.aca.2024.342291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Microfluidic systems have attracted considerable attention due to their low reagent consumption, short analysis time, and ease of integration in comparison to conventional methods, but still suffer from shortcomings in sensitivity and selectivity. Surface enhanced Raman scattering (SERS) offers several advantages in the detection of compounds, including label-free detection at the single-molecule level, and the narrow Raman peak width for multiplexing. Combining microfluidics with SERS is a viable way to improve their detection sensitivity. Researchers have recently developed several SERS coupled microfluidic platforms with substantial potential for biomolecular detection, cellular and bacterial analysis, and hazardous substance detection. We review the current development of SERS coupled microfluidic platforms, illustrate their detection principles and construction, and summarize the latest applications in biology, environmental protection and food safety. In addition, we innovatively summarize the current status of SERS coupled multi-mode microfluidic platforms with other detection technologies. Finally, we discuss the challenges and countermeasures during the development of SERS coupled microfluidic platforms, as well as predict the future development trend of SERS coupled microfluidic platforms.
Collapse
Affiliation(s)
- Chenyang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
6
|
Gobbo M, Caligiuri I, Giannetti M, Litti L, Mazzuca C, Rizzolio F, Palleschi A, Meneghetti M. SERS nanostructures with engineered active peptides against an immune checkpoint protein. NANOSCALE 2024; 16:5206-5214. [PMID: 38375540 DOI: 10.1039/d4nr00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The immune checkpoint programmed death ligand 1 (PD-L1) protein is expressed by tumor cells and it suppresses the killer activity of CD8+ T-lymphocyte cells binding to the programmed death 1 (PD-1) protein of these immune cells. Binding to either PD-L1 or PD1 is used for avoiding the inactivation of CD8+ T-lymphocyte cells. We report, for the first time, Au plasmonic nanostructures with surface-enhanced Raman scattering (SERS) properties (SERS nanostructures) and functionalized with an engineered peptide (CLP002: Trp-His-Arg-Ser-Tyr-Tyr-Thr-Trp-Asn-Leu-Asn-Thr), which targets PD-L1. Molecular dynamics calculations are used to describe the interaction of the targeting peptide with PD-L1 in the region where the interaction with PD-1 occurs, showing also the poor targeting activity of a peptide with the same amino acids, but a scrambled sequence. The results are confirmed experimentally since a very good targeting activity is observed against the MDA-MB-231 breast adenocarcinoma cancer cell line, which overexpresses PD-L1. A good activity is observed, in particular, for SERS nanostructures where the CLP002-engineered peptide is linked to the nanostructure surface with a short charged amino acid sequence and a long PEG chain. The results show that the functionalized SERS nanostructures show very good targeting of the immune checkpoint PD-L1.
Collapse
Affiliation(s)
- Marina Gobbo
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via F. Gallini 2, 33081 Aviano, PN, Italy
| | - Micaela Giannetti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", and CSGI unit of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", and CSGI unit of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via F. Gallini 2, 33081 Aviano, PN, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Venice, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", and CSGI unit of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Moreno Meneghetti
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
7
|
Ricci S, Buonomo M, Casalini S, Bonacchi S, Meneghetti M, Litti L. High performance multi-purpose nanostructured thin films by inkjet printing: Au micro-electrodes and SERS substrates. NANOSCALE ADVANCES 2023; 5:1970-1977. [PMID: 36998657 PMCID: PMC10044483 DOI: 10.1039/d2na00917j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Nanostructured thin metal films are exploited in a wide range of applications, spanning from electrical to optical transducers and sensors. Inkjet printing has become a compliant technique for sustainable, solution-processed, and cost-effective thin films fabrication. Inspired by the principles of green chemistry, here we show two novel formulations of Au nanoparticle-based inks for manufacturing nanostructured and conductive thin films by using inkjet printing. This approach showed the feasibility to minimize the use of two limiting factors, namely stabilizers and sintering. The extensive morphological and structural characterization provides pieces of evidence about how the nanotextures lead to high electrical and optical performances. Our conductive films (sheet resistance equal to 10.8 ± 4.1 Ω per square) are a few hundred nanometres thick and feature remarkable optical properties in terms of SERS activity with enhancement factors as high as 107 averaged on the mm2 scale. Our proof-of-concept succeeded in simultaneously combining electrochemistry and SERS by means of real-time tracking of the specific signal of mercaptobenzoic acid cast on our nanostructured electrode.
Collapse
Affiliation(s)
- Simona Ricci
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Marco Buonomo
- Department of Informatic Engineering, University of Padova Via Gradenigo 6/b 35131 Padova Italy
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Sara Bonacchi
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Moreno Meneghetti
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova Via Marzolo, 1, 35131 Padova Italy +39-049-8275530
| |
Collapse
|
8
|
Berganza L, Litti L, Meneghetti M, Lanceros-Méndez S, Reguera J. Enhancement of Magnetic Surface-Enhanced Raman Scattering Detection by Tailoring Fe 3O 4@Au Nanorod Shell Thickness and Its Application in the On-site Detection of Antibiotics in Water. ACS OMEGA 2022; 7:45493-45503. [PMID: 36530269 PMCID: PMC9753213 DOI: 10.1021/acsomega.2c06099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has become a promising method for the detection of contaminants or biomolecules in aqueous media. The low interference of water, the unique spectral fingerprint, and the development of portable and handheld equipment for in situ measurements underpin its predominance among other spectroscopic techniques. Among the SERS nanoparticle substrates, those composed of plasmonic and magnetic components are prominent examples of versatility and efficiency. These substrates harness the ability to capture the target analyte, concentrate it, and generate unique hotspots for superior enhancement. Here, we have evaluated the use of gold-coated magnetite nanorods as a novel multifunctional magnetic-plasmonic SERS substrate. The nanostructures were synthesized starting from core-satellite structures. A series of variants with different degrees of Au coatings were then prepared by seed-mediated growth of gold, from core-satellite structures to core-shell with partial and complete shells. All of them were tested, using a portable Raman instrument, with the model molecule 4-mercaptobenzoic acid in colloidal suspension and after magnetic separation. Experimental results were compared with the boundary element method to establish the mechanism of Raman enhancement. The results show a quick magnetic separation of the nanoparticles and excellent Raman enhancement for all the nanoparticles both in dispersion and magnetically concentrated with limits of detection up to the nM range (∼50 nM) and a quantitative calibration curve. The nanostructures were then tested for the sensing of the antibiotic ciprofloxacin, highly relevant in preventing antibiotic contaminants in water reservoirs and drug monitoring, showing that ciprofloxacin can be detected using a portable Raman instrument at a concentration as low as 100 nM in a few minutes, which makes it highly relevant in practical point-of-care devices and in situ use.
Collapse
Affiliation(s)
- Leixuri
B. Berganza
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU
Science Park, 48940Leioa, Spain
| | - Lucio Litti
- Nanostructures
and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131Padova, Italy
| | - Moreno Meneghetti
- Nanostructures
and Optics Laboratory, Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131Padova, Italy
| | - Senentxu Lanceros-Méndez
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU
Science Park, 48940Leioa, Spain
- Ikerbasque,
Basque Foundation for Science Bilbao, Plaza Euskadi 5, 48009Bilbao, Spain
| | - Javier Reguera
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU
Science Park, 48940Leioa, Spain
| |
Collapse
|
9
|
Das A, Chadha R, Mishra A, Maiti N. Conformational Selectivity of Merocyanine on Nanostructured Silver Films: Surface Enhanced Resonance Raman Scattering (SERRS) and Density Functional Theoretical (DFT) Study. Front Chem 2022; 10:902585. [PMID: 35769442 PMCID: PMC9234333 DOI: 10.3389/fchem.2022.902585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, detailed structural and vibrational analysis of merocyanine has been investigated using Raman, surface enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS). The Raman, SERS and SERRS studies aided by density functional theoretical (DFT) calculations clearly established the prevalence of the trans- and cis-conformers of the protonated form of merocyanine (MCH+) in solid and acetonitrile solution. The binding characteristics of merocyanine adsorbed on nanostructured silver-coated films (SCFs) were investigated using excitation-dependent SERS, concentration-dependent SERRS and DFT studies. The conformers of merocyanine involved in the surface adsorption processes were recognized. The prominent marker bands observed at 1538 (ethylenic C=C stretch) and 1133 cm−1 (pyridinium C-N stretch) in the Raman spectrum of merocyanine in acetonitrile shifted to 1540 and 1126 cm−1, respectively on the nanostructured SCFs. The shift in the marker bands is associated with either the preferential binding of selective conformer or change in resonance equilibrium between the benzenoid and quinoid forms. The excitation wavelength dependent SERS spectrum infers that in addition to the major contribution from the electromagnetic enhancement, chemical (resonance) effect leads to the amplification of the 1540 cm−1 band. The concentration-dependent SERRS study showed maximum enhancement for the nanostructured SCFs functionalized with 1 μM concentration of merocyanine, indicative of monolayer coverage. For lower concentrations of merocyanine, the SERRS signal intensity reduced without any alteration in the peak positions. The SERRS study thus, revealed sub-nanomolar (0.1 nM) sensing of merocyanine using nanostructured SCFs with the analytical enhancement factor (AEF) of ∼ 1010 for the 1126 cm−1 and 1540 cm−1 Raman bands for MC concentration of 0.1 nM. In this study, combination of SERRS and DFT have clearly established the predominance of trans-MCH+ on the nanostructured silver surface with minor contribution from cis-MCH+, which remain exclusively bound to the surface via the phenoxyl ring O atom. This conformational surface selectivity of geometrical isomers of merocyanine using nanostructured surfaces can be further explored for energy efficient and economical separation of geometrical isomers.
Collapse
Affiliation(s)
- Abhishek Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ridhima Chadha
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amaresh Mishra
- Department of Chemistry, Sambalpur University, Sambalpur, Orissa
| | - Nandita Maiti
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Nandita Maiti,
| |
Collapse
|
10
|
Application of Dual-Enhanced Surface-Enhanced Raman Scattering Probe Technology in the Diagnosis of Tumor Cells in Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113582. [PMID: 35684522 PMCID: PMC9182129 DOI: 10.3390/molecules27113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
With the development of precision medicine, antigen/antibody-targeted therapy has brought great hope to tumor patients; however, the migration of tumor cells, especially a small number of cells flowing into blood or other tissues, remains a clinical challenge. In particular, it is difficult to use functional gold nanomaterials for targeted clinical tumor diagnosis while simultaneously obtaining stable and highly sensitive Raman signals. Therefore, we developed a detection method for functional Au Nanostars (AuNSs) with dual signal enhancement that can specifically track location and obtain high-intensity surface-enhanced Raman scattering (SERS) signals. First, AuNSs with specific optical properties were synthesized and functionalized. The Raman dye 4-mercapto-hydroxybenzoic acid and polyethylene glycol were coupled with the tumor marker, epidermal growth factor receptor, to obtain the targeted SERS probes. In addition, a detection chip was prepared for Raman detection with physical enhancement, exhibiting a 40-times higher signal intensity than that of quartz glass. This study combines physical enhancement and SERS enhancement technologies to achieve dual enhancement, enabling the detection of a highly sensitive and stable Raman signal; this has potential clinical value for antigen/antibody-targeted tumor diagnosis and treatment.
Collapse
|
11
|
Litti L, Trivini S, Ferraro D, Reguera J. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34752-34761. [PMID: 34256559 PMCID: PMC8397251 DOI: 10.1021/acsami.1c09771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 04/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ideal technique for environmental and biomedical sensor devices due to not only the highly informative vibrational features but also to its ultrasensitive nature and possibilities toward quantitative assays. Moreover, in these areas, SERS is especially useful as water hinders most of the spectroscopic techniques such as those based on IR absorption. Despite its promising possibilities, most SERS substrates and technological frameworks for SERS detection are still restricted to research laboratories, mainly due to a lack of robust technologies and standardized protocols. We present herein the implementation of Janus magnetic/plasmonic Fe3O4/Au nanostars (JMNSs) as SERS colloidal substrates for the quantitative determination of several analytes. This multifunctional substrate enables the application of an external magnetic field for JMNSs retention at a specific position within a microfluidic channel, leading to additional amplification of the SERS signals. A microfluidic device was devised and 3D printed as a demonstration of cheap and fast production, with the potential for large-scale implementation. As low as 100 μL of sample was sufficient to obtain results in 30 min, and the chip could be reused for several cycles. To show the potential and versatility of the sensing system, JMNSs were exploited with the microfluidic device for the detection of several relevant analytes showing increasing analytical difficulty, including the comparative detection of p-mercaptobenzoic acid and crystal violet and the quantitative detection of the herbicide flumioxazin and the anticancer drug erlotinib in plasma, where calibration curves within diagnostic concentration intervals were obtained.
Collapse
Affiliation(s)
- Lucio Litti
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Stefano Trivini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Davide Ferraro
- Department
of Physics and Astronomy, University of
Padova, via Marzolo 8, 35131 Padova, Italy
| | - Javier Reguera
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|