1
|
Liu F, Zheng H, Ma S, Zhang W, Liu X, Chua Y, Shi L, Zhao R. Advancing brain-inspired computing with hybrid neural networks. Natl Sci Rev 2024; 11:nwae066. [PMID: 38577666 PMCID: PMC10989656 DOI: 10.1093/nsr/nwae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 04/06/2024] Open
Abstract
Brain-inspired computing, drawing inspiration from the fundamental structure and information-processing mechanisms of the human brain, has gained significant momentum in recent years. It has emerged as a research paradigm centered on brain-computer dual-driven and multi-network integration. One noteworthy instance of this paradigm is the hybrid neural network (HNN), which integrates computer-science-oriented artificial neural networks (ANNs) with neuroscience-oriented spiking neural networks (SNNs). HNNs exhibit distinct advantages in various intelligent tasks, including perception, cognition and learning. This paper presents a comprehensive review of HNNs with an emphasis on their origin, concepts, biological perspective, construction framework and supporting systems. Furthermore, insights and suggestions for potential research directions are provided aiming to propel the advancement of the HNN paradigm.
Collapse
Affiliation(s)
- Faqiang Liu
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Hao Zheng
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Songchen Ma
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Weihao Zhang
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xue Liu
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yansong Chua
- Neuromorphic Computing Laboratory, China Nanhu Academy of Electronics and Information Technology, Jiaxing 314001, China
| | - Luping Shi
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Rong Zhao
- Center for Brain-Inspired Computing Research, Optical Memory National Engineering Research Center, Tsinghua University-China Electronics Technology HIK Group Co. Joint Research Center for Brain-inspired Computing, IDG/McGovern Institute for Brain Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Goel A, Goel AK, Kumar A. Performance analysis of multiple input single layer neural network hardware chip. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-22. [PMID: 36846531 PMCID: PMC9939870 DOI: 10.1007/s11042-023-14627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/24/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
An artificial neural network (ANN) is a computational system that is designed to replicate and process the behavior of the human brain using neuron nodes. ANNs are made up of thousands of processing neurons with input and output modules that self-learn and compute data to offer the best results. The hardware realization of the massive neuron system is a difficult task. The research article emphasizes the design and realization of multiple input perceptron chips in Xilinx integrated system environment (ISE) 14.7 software. The proposed single-layer ANN architecture is scalable and accepts variable 64 inputs. The design is distributed in eight parallel blocks of ANN in which one block consists of eight neurons. The performance of the chip is analyzed based on the hardware utilization, memory, combinational delay, and different processing elements with targeted hardware Virtex-5 field-programmable gate array (FPGA). The chip simulation is performed in Modelsim 10.0 software. Artificial intelligence has a wide range of applications, and cutting-edge computing technology has a vast market. Hardware processors that are fast, affordable, and suited for ANN applications and accelerators are being developed by the industries. The novelty of the work is that it provides a parallel and scalable design platform on FPGA for fast switching, which is the current need in the forthcoming neuromorphic hardware.
Collapse
Affiliation(s)
- Akash Goel
- Department of Computer Science & Engineering, Galgotia’s University, Greater Noida, NCR India
| | - Amit Kumar Goel
- Department of Computer Science & Engineering, Galgotia’s University, Greater Noida, NCR India
| | - Adesh Kumar
- Department of Electrical & Electronics Engineering, University of Petroleum and Energy Studies, Dehradun, India
| |
Collapse
|
3
|
Khan MS, Olds JL. When neuro-robots go wrong: A review. Front Neurorobot 2023; 17:1112839. [PMID: 36819005 PMCID: PMC9935594 DOI: 10.3389/fnbot.2023.1112839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Neuro-robots are a class of autonomous machines that, in their architecture, mimic aspects of the human brain and cognition. As such, they represent unique artifacts created by humans based on human understanding of healthy human brains. European Union's Convention on Roboethics 2025 states that the design of all robots (including neuro-robots) must include provisions for the complete traceability of the robots' actions, analogous to an aircraft's flight data recorder. At the same time, one can anticipate rising instances of neuro-robotic failure, as they operate on imperfect data in real environments, and the underlying AI behind such neuro-robots has yet to achieve explainability. This paper reviews the trajectory of the technology used in neuro-robots and accompanying failures. The failures demand an explanation. While drawing on existing explainable AI research, we argue explainability in AI limits the same in neuro-robots. In order to make robots more explainable, we suggest potential pathways for future research.
Collapse
|
4
|
A Brain-Inspired Dynamic Environmental Emergency Response Framework for Sudden Water Pollution Accidents. WATER 2021. [DOI: 10.3390/w13213097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sudden water pollution accidents happen frequently in China, and the number of treated accidents is low, due to the slow response speed. In addition, there is a lack of decision support systems that can follow up the whole process instead of just giving a one-time method. This study constructs a framework suitable for China that has both the ability of quick responses and full-time dynamic decision support, such as an experienced expert, while not being affected by pressure, to be used an emergency response for sudden water pollution accidents. To allow new decisionmakers to integrate into this professional decision-making role more quickly, a brain-inspired system is realized through combining the machine learning algorithm KNN and the idea of iteration and dynamic programming. The feasibility of our framework is further tested through a major water pollution happened recently. The results show that this framework can be well connected with the emergency response technology system that has been completed before, while also supporting the rapid and robust decision making such as the decisionmaker’s second brain, reducing the demand for professional background and experience of emergency decisionmakers, thus effectively shorten the waiting period for response.
Collapse
|