1
|
Mohammadi M, Mohammadi R. Potential of tetraploid wheats in plant breeding: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112155. [PMID: 38885883 DOI: 10.1016/j.plantsci.2024.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Domestication syndrome, selection pressure, and modern plant breeding programs have reduced the genetic diversity of the wheat germplasm. For the genetic gains of breeding programs to be sustainable, plant breeders require a diverse gene pool to select genes for resistance to biotic stress factors, tolerance to abiotic stress factors, and improved quality and yield components. Thus, old landraces, subspecies and wild ancestors are rich sources of genetic diversity that have not yet been fully exploited, and it is possible to utilize this diversity. Compared with durum wheat, tetraploid wheat subspecies have retained much greater genetic diversity despite genetic drift and various environmental influences, and the identification and utilization of this diversity can make a greater contribution to the genetic enrichment of wheat. In addition, using the pre-breeding method, the valuable left-behind alleles in the wheat gene pool can be re-introduced through hybridization and introgressive gene flow to create a sustainable opportunity for the genetic gain of wheat. This review provides some insights about the potential of tetraploid wheats in plant breeding and the genetic gains made by them in plant breeding across past decades, and gathers the known functional information on genes/QTLs, metabolites, traits and their direct involvement in wheat resistance/tolerance to biotic/abiotic stresses.
Collapse
Affiliation(s)
- Majid Mohammadi
- Dryland Agricultural Research Institute (DARI), Sararood branch, AREEO, Kermanshah, Iran.
| | - Reza Mohammadi
- Dryland Agricultural Research Institute (DARI), Sararood branch, AREEO, Kermanshah, Iran.
| |
Collapse
|
2
|
Walker PL, Belmonte MF, McCallum BD, McCartney CA, Randhawa HS, Henriquez MA. Dual RNA-sequencing of Fusarium head blight resistance in winter wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1299461. [PMID: 38239218 PMCID: PMC10794533 DOI: 10.3389/fpls.2023.1299461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease responsible for significant yield losses in wheat and other cereal crops across the globe. FHB infection of wheat spikes results in grain contamination with mycotoxins, reducing both grain quality and yield. Breeding strategies have resulted in the production of FHB-resistant cultivars, however, the underlying molecular mechanisms of resistance in the majority of these cultivars are still poorly understood. To improve our understanding of FHB-resistance, we performed a transcriptomic analysis of FHB-resistant AC Emerson, FHB-moderately resistant AC Morley, and FHB-susceptible CDC Falcon in response to Fusarium graminearum. Wheat spikelets located directly below the point of inoculation were collected at 7-days post inoculation (dpi), where dual RNA-sequencing was performed to explore differential expression patterns between wheat cultivars in addition to the challenging pathogen. Differential expression analysis revealed distinct defense responses within FHB-resistant cultivars including the enrichment of physical defense through the lignin biosynthesis pathway, and DON detoxification through the activity of UDP-glycosyltransferases. Nucleotide sequence variants were also identified broadly between these cultivars with several variants being identified within differentially expressed putative defense genes. Further, F. graminearum demonstrated differential expression of mycotoxin biosynthesis pathways during infection, leading to the identification of putative pathogenicity factors.
Collapse
Affiliation(s)
- Philip L. Walker
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Curt A. McCartney
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Harpinder S. Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Maria A. Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- Department of Plant Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Ji C, Liang Z, Cao H, Chen Z, Kong X, Xin Z, He M, Wang J, Wei Z, Xing J, Li C, Zhang Y, Zhang H, Sun F, Li J, Li K. Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1109077. [PMID: 37235031 PMCID: PMC10206238 DOI: 10.3389/fpls.2023.1109077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Salt stress inhibits the beneficial effects of most plant growth-promoting rhizobacteria. The synergistic relationship between beneficial rhizosphere microorganisms and plants helps achieve more stable growth-promoting effects. This study aimed 1) to elucidate changes in gene expression profiles in the roots and leaves of wheat after inoculation with compound microbial agents and 2) to determine the mechanisms by which plant growth-promoting rhizobacteria mediate plant responses to microorganisms. Methods Following inoculation with compound bacteria, transcriptome characteristics of gene expression profiles of wheat, roots, and leaves at the flowering stage were investigated using Illumina high-throughput sequencing technology. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes that were significantly differentially expressed. Results The expression of 231 genes in the roots of bacterial preparations (BIO) -inoculated wheat changed significantly (including 35 upregulated and 196 downregulated genes) compared with that of non-inoculated wheat. The expression of 16,321 genes in leaves changed significantly, including 9651 upregulated genes and 6670 downregulated genes. The differentially expressed genes were involved in the metabolism of carbohydrates, amino acids, and secondary compounds as well as signal transduction pathways. The ethylene receptor 1 gene in wheat leaves was significantly downregulated, and genes related to ethylene-responsive transcription factor were significantly upregulated. GO enrichment analysis showed that metabolic and cellular processes were the main functions affected in the roots and leaves. The main molecular functions altered were binding and catalytic activities, among which the cellular oxidant detoxification enrichment rate was highly expressed in the roots. The expression of peroxisome size regulation was the highest in the leaves. KEGG enrichment analysis showed that linoleic acid metabolism expression was highest in the roots, and the expression of photosynthesis-antenna proteins was the highest in leaves. After inoculation with a complex biosynthesis agent, the phenylalanine ammonia lyase (PAL) gene of the phenylpropanoid biosynthesis pathway was upregulated in wheat leaf cells while 4CL, CCR, and CYP73A were downregulated. Additionally, CYP98A and REF1 genes involved in the flavonoid biosynthesis pathway were upregulated, while F5H, HCT, CCR, E2.1.1.104, and TOGT1-related genes were downregulated. Discussion Differentially expressed genes may play key roles in improving salt tolerance in wheat. Compound microbial inoculants promoted the growth of wheat under salt stress and improved disease resistance by regulating the expression of metabolism-related genes in wheat roots and leaves and activating immune pathway-related genes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Shandong Yongsheng Agricultural Development Co., Ltd., Yongsheng (Shouguang) Vegetable Technology Research Institute Co., Ltd, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, Shandong, China
| | - Xuehua Kong
- Weifang Hanting Vestibule School, Weifang Education Bureau, Weifang, Shandong, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Mingchao He
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jie Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zichao Wei
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jiahao Xing
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Chunyu Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Fujin Sun
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Runxin Fruit and Vegetable Cultivation Cooperative of Weifang Economic Development Zone, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Jianlin Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Weifang Nuode Biotechnology Co., LTD, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Kun Li
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
- College of Forestry, Shandong Agriculture University, Taian, Shandong, China
| |
Collapse
|
4
|
Zuluaga DL, Blanco E, Mangini G, Sonnante G, Curci PL. A Survey of the Transcriptomic Resources in Durum Wheat: Stress Responses, Data Integration and Exploitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1267. [PMID: 36986956 PMCID: PMC10056183 DOI: 10.3390/plants12061267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.) is an allotetraploid cereal crop of worldwide importance, given its use for making pasta, couscous, and bulgur. Under climate change scenarios, abiotic (e.g., high and low temperatures, salinity, drought) and biotic (mainly exemplified by fungal pathogens) stresses represent a significant limit for durum cultivation because they can severely affect yield and grain quality. The advent of next-generation sequencing technologies has brought a huge development in transcriptomic resources with many relevant datasets now available for durum wheat, at various anatomical levels, also focusing on phenological phases and environmental conditions. In this review, we cover all the transcriptomic resources generated on durum wheat to date and focus on the corresponding scientific insights gained into abiotic and biotic stress responses. We describe relevant databases, tools and approaches, including connections with other "omics" that could assist data integration for candidate gene discovery for bio-agronomical traits. The biological knowledge summarized here will ultimately help in accelerating durum wheat breeding.
Collapse
Affiliation(s)
- Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
5
|
Francesconi S, Ronchetti R, Camaioni E, Giovagnoli S, Sestili F, Palombieri S, Balestra GM. Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. PLANTS (BASEL, SWITZERLAND) 2023; 12:1223. [PMID: 36986912 PMCID: PMC10054448 DOI: 10.3390/plants12061223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Riccardo Ronchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Sinha A, Singh L, Rawat N. Current understanding of atypical resistance against fungal pathogens in wheat. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102247. [PMID: 35716636 DOI: 10.1016/j.pbi.2022.102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Pathogens and pests are a major challenge to global food security. Around one hundred different pests and pathogens challenge wheat, one of the most important food crops in the world. Traditional worldwide use of a few key resistance genes in wheat cultivars has necessitated a diversification of the toolbox of resistance genes in wheat varieties over the coming decades to meet the global production demands. Recent advances in gene discovery and functional characterization of genetic resistance mechanisms in wheat reveal great diversity in the types and effectiveness of the underlying resistance genes. This article summarizes the recent developments in the discovery of non-traditional "atypical" resistance genes in wheat against diverse fungal pathogens.
Collapse
Affiliation(s)
- Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Breeding Tools for Assessing and Improving Resistance and Limiting Mycotoxin Production by Fusarium graminearum in Wheat. PLANTS 2022; 11:plants11151933. [PMID: 35893637 PMCID: PMC9330798 DOI: 10.3390/plants11151933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The recently adopted conservation and minimum tillage practices in wheat-production systems coupled with the concomitant warming of the Earth are believed to have caused the upsurges in Fusarium head blight (FHB) prevalence in major wheat-producing regions of the world. Measures to counter this effect include breeding for resistance to both initial infection of wheat and spread of the disease. Cases of mycotoxicosis caused by ingestion of wheat by-products contaminated with FHB mycotoxins have necessitated the need for resistant wheat cultivars that can limit mycotoxin production by the dominant causal pathogen, Fusarium graminearum. This manuscript reviews breeding tools for assessing and improving resistance as well as limiting mycotoxin contamination in wheat to reflect on the current state of affairs. Combining these aspects in wheat research and development promotes sustainable quality grain production and safeguards human and livestock health from mycotoxicosis.
Collapse
|
8
|
Shi Y, Qin Y, Li F, Wang H. Genome-Wide Profiling of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Potato Response to DON Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934379. [PMID: 35812951 PMCID: PMC9260311 DOI: 10.3389/fpls.2022.934379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Potato is an important food crop that occupies lesser area but has greater production than rice and wheat. However, potato production is affected by numerous biotic and abiotic stresses, among which Fusarium dry rot is a disease that has significant effect on potato production, storage, and processing. However, the role of DNA methylation in regulating potato response to Fusarium toxin deoxynivalenol (DON) stress is still not fully understood. In this study, we performed DNA methylome and transcriptome analyses of potato tubers treated with five concentrations of DON. The global DNA methylation levels in potato tubers treated with different concentrations of DON showed significant changes relative to those in the control. In particular, the 20 ng/ml treatment showed the largest decrease in all three contexts of methylation levels, especially CHH contexts in transposon regions. The differentially methylated region (DMR)-associated differentially expressed genes (DEGs) were significantly enriched in resistance-related metabolic pathways, indicating that DNA methylation plays an essential role in potato response to DON stress. Furthermore, we examined lesions on potato tubers infested with Fusarium after treatment. Furthermore, the potato tubers treated with 5 and 35 ng/ml DON had lesions of significantly smaller diameters than those of the control, indicating that DON stress may induce resistance. We speculate that this may be related to epigenetic memory created after DNA methylation changes. The detailed DNA methylome and transcriptome profiles suggest that DNA methylation plays a vital role in potato disease resistance and has great potential for enhancing potato dry rot resistance.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fenglan Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Haifeng Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Improvement and Re-Evolution of Tetraploid Wheat for Global Environmental Challenge and Diversity Consumption Demand. Int J Mol Sci 2022; 23:ijms23042206. [PMID: 35216323 PMCID: PMC8878472 DOI: 10.3390/ijms23042206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Allotetraploid durum wheat is the second most widely cultivated wheat, following hexaploid bread wheat, and is one of the major protein and calorie sources of the human diet. However, durum wheat is encountered with a severe grain yield bottleneck due to the erosion of genetic diversity stemming from long-term domestication and especially modern breeding programs. The improvement of yield and grain quality of durum wheat is crucial when confronted with the increasing global population, changing climate environments, and the non-ignorable increasing incidence of wheat-related disorders. This review summarized the domestication and evolution process and discussed the durum wheat re-evolution attempts performed by global researchers using diploid einkorn, tetraploid emmer wheat, hexaploid wheat (particularly the D-subgenome), etc. In addition, the re-evolution of durum wheat would be promoted by the genetic enrichment process, which could diversify allelic combinations through enhancing chromosome recombination (pentaploid hybridization or pairing of homologous chromosomes gene Ph mutant line induced homoeologous recombination) and environmental adaptability via alien introgressive genes (wide cross or distant hybridization followed by embryo rescue), and modifying target genes or traits by molecular approaches, such as CRISPR/Cas9 or RNA interference (RNAi). A brief discussion of the future perspectives for exploring germplasm for the modern improvement and re-evolution of durum wheat is included.
Collapse
|
10
|
Pazzaglia J, Badalamenti F, Bernardeau-Esteller J, Ruiz JM, Giacalone VM, Procaccini G, Marín-Guirao L. Thermo-priming increases heat-stress tolerance in seedlings of the Mediterranean seagrass P. oceanica. MARINE POLLUTION BULLETIN 2022; 174:113164. [PMID: 34864463 DOI: 10.1016/j.marpolbul.2021.113164] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Seawater warming and increased incidence of marine heatwaves (MHW) are threatening the integrity of coastal marine habitats including seagrasses, which are particularly vulnerable to climate changes. Novel stress tolerance-enhancing strategies, including thermo-priming, have been extensively applied in terrestrial plants for enhancing resilience capacity under the re-occurrence of a stress event. We applied, for the first time in seedlings of the Mediterranean seagrass Posidonia oceanica, a thermo-priming treatment through the exposure to a simulated warming event. We analyzed the photo-physiological and growth performance of primed and non-primed seedlings, and the gene expression responses of selected genes (i.e. stress-, photosynthesis- and epigenetic-related genes). Results revealed that during the re-occurring stress event, primed seedlings performed better than unprimed showing unaltered photo-physiology supported by high expression levels of genes related to stress response, photosynthesis, and epigenetic modifications. These findings offer new opportunities to improve conservation and restoration efforts in a future scenario of environmental changes.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fabio Badalamenti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; CNR-IAS, Lungomare Cristoforo Colombo 4521, 90149 Palermo, Italy
| | - Jaime Bernardeau-Esteller
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | | | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Lazaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| |
Collapse
|
11
|
Harnessing epigenetic variability for crop improvement: current status and future prospects. Genes Genomics 2021; 44:259-266. [PMID: 34807374 DOI: 10.1007/s13258-021-01189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The epigenetic mechanisms play critical roles in a vast diversity of biological processes of plants, including development and response to environmental challenges. Particularly, DNA methylation is a stable epigenetic signature that supplements the genetics-based view of complex life phenomena. In crop breeding, the decrease in genetic diversity due to artificial selection of conventional breeding methods has been a long-standing concern. Therefore, the epigenetic diversity has been proposed as a new resource for future crop breeding, which will be hereinafter referred to as epibreeding. DISCUSSION The induction of methylome changes has been performed in plants by several methods including chemical drugs treatment and tissue culture. Target-specific epigenetic engineering has been also attempted by exogenous RNAi mediated by virus-induced gene silencing and grafting. Importantly, the new and innovative techniques including the CRISPR-Cas9 system have recently been adopted in epigenetic engineering of plant genomes, facilitating the efforts for epibreeding. CONCLUSION In this review, we introduce several examples of natural and induced epigenetic changes impacting on agronomic traits and discuss the methods for generating epigenomic diversity and site-specific epigenetic engineering.
Collapse
|
12
|
Metabolomics analysis of grains of wheat infected and noninfected with Tilletia controversa Kühn. Sci Rep 2021; 11:18876. [PMID: 34556726 PMCID: PMC8460654 DOI: 10.1038/s41598-021-98283-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Dwarf bunt caused by the pathogen Tilletia controversa Kühn is one of the most serious quarantine diseases of winter wheat. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue levels of plants. In the present study, a liquid chromatography/mass spectrometry (LC/MS) metabolomics approach was used to investigate the changes in the grain metabolomics of infected and noninfected with T. controversa samples. PCA suggested that T. controversa-infected and noninfected samples were separated during the interaction. LC/MS analysis showed that 62 different metabolites were recorded in the grains, among which a total of 34 metabolites were upregulated and 28 metabolites were downregulated. Prostaglandins (PGs) and 9-hydroxyoctadecadienoic acids (9-HODEs) are fungal toxin-related substances, and their expression significantly increased in T. controversa-infected grains. Additionally, the concentrations of cucurbic acid and octadecatrienoic acid changed significantly after pathogen infection, which play a large role in plant defense. The eight different metabolic pathways activated during T. controversa and wheat plant interactions included phenylalanine metabolism, isoquinoline alkaloid biosynthesis, starch and sucrose metabolism, tyrosine metabolism, sphingolipid metabolism, arginine and proline metabolism, alanine, aspartate, and glutamate metabolism, and tryptophan metabolism. In conclusion, we found differences in the metabolic profiles of wheat grains after T. controversa infection. To our knowledge, this is the first study to evaluate the metabolites in wheat grains after T. controversa infection.
Collapse
|
13
|
Tyczewska A, Gracz-Bernaciak J, Szymkowiak J, Twardowski T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance. J Appl Genet 2021; 62:235-248. [PMID: 33512663 PMCID: PMC8032638 DOI: 10.1007/s13353-021-00609-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation levels were determined at approximately 60% for both tested lines. The most significant changes were observed for the more sensitive Z. mays line, where 6 h after the herbicide application, a large increase in the level of DNA methylation (attributed to the increase in fully methylated bands (18.65%)) was noted. DNA sequencing revealed that changes in DNA methylation profiles occurred in genes encoding heat shock proteins, membrane proteins, transporters, kinases, lipases, methyltransferases, zinc-finger proteins, cytochromes, and transposons. Herbicide stress-induced changes depended on the Z. mays variety, and the large increase in DNA methylation level in the sensitive line resulted in a lower ability to cope with stress conditions.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | | | - Jakub Szymkowiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
14
|
Zakieh M, Gaikpa DS, Leiva Sandoval F, Alamrani M, Henriksson T, Odilbekov F, Chawade A. Characterizing Winter Wheat Germplasm for Fusarium Head Blight Resistance Under Accelerated Growth Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:705006. [PMID: 34512690 PMCID: PMC8425451 DOI: 10.3389/fpls.2021.705006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/16/2023]
Abstract
Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.
Collapse
Affiliation(s)
- Mustafa Zakieh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - David S. Gaikpa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Marwan Alamrani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- Lantmännen Lantbruk, Svalöv, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Aakash Chawade,
| |
Collapse
|
15
|
Bentivenga G, Spina A, Ammar K, Allegra M, Cacciola SO. Screening of Durum Wheat ( Triticum turgidum L. subsp. durum (Desf.) Husn.) Italian Cultivars for Susceptibility to Fusarium Head Blight Incited by Fusarium graminearum. PLANTS 2020; 10:plants10010068. [PMID: 33396264 PMCID: PMC7823612 DOI: 10.3390/plants10010068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
In 2009, a set of 35 cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) of Italian origin was screened for fusarium head blight (FHB) susceptibility at CIMMYT (Mexico) and in the 2019-20 cropping season, 16 of these cultivars, which had been included in the Italian National Plant Variety Register, were tested again in southern and northern Italy. Wheat cultivars were artificially inoculated during anthesis with a conidial suspension of Fusarium graminearum sensu lato using a standard spray inoculation method. Inoculum was a mixture of mono-conidial isolates sourced in the same areas where the trials were performed. Isolates had been characterized on the basis of morphological characteristics and by DNA PCR amplification using a specific primer set and then selected for their virulence and ability to produce mycotoxins. The susceptibility to FHB was rated on the basis of the disease severity, disease incidence and FHB index. Almost all of the tested cultivars were susceptible or very susceptible to FHB with the only exception of "Duprì", "Tiziana" and "Dylan" which proved to be moderately susceptible. The susceptibility to FHB was inversely correlated with the plant height and flowering biology, the tall and the late heading cultivars being less susceptible.
Collapse
Affiliation(s)
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)–Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy;
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico;
| | - Maria Allegra
- Agricultural Research Council and Economics (CREA)–Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95123 Catania, Italy;
| | - Santa Olga Cacciola
- Department Agriculture, Food and Environment (Di3A), University of Catania, via S. Sofia n.100, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|