1
|
Shan P, Ma L, Yang X, Li M, Liu Z, Hou J, Jiang S, Zhang L, Shi L, Yang P, Lin C, Wang B, Sun J, Guo H, Ding Y, Gou H, Zhao Z, Cheng J. Molecular Hydride Superconductor BiH 4 with Tc up to 91 K at 170 GPa. J Am Chem Soc 2025; 147:4375-4381. [PMID: 39711192 DOI: 10.1021/jacs.4c15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In pursuit of high-Tc hydride superconductors, the molecular hydrides have attracted less attention because the hydrogen quasimolecules are usually inactive for superconductivity. Here, we report on the successful synthesis of a novel bismuth hydride superconductor C2/c-BiH4 at pressures around 170-180 GPa. Its structure comprises bismuth atoms and elongated hydrogen molecules with a H-H bond length of 0.81 Å at 170 GPa, characterizing it as a typical molecular hydride. Transport measurements revealed the occurrence of superconductivity with Tc up to 91 K at 170 GPa, as evidenced by a sharp drop of resistivity to zero and a characteristic downward shift of Tc under magnetic fields. Calculations by density functional theory elucidate that both midfrequency H-derived phonons and low-frequency vibrations from Bi atoms are important for the strong electron-phonon coupling in BiH4, differentiating it from most high-Tc superconducting hydrides. Our work not only places C2/c-BiH4 among the molecular hydride superconductors with the highest Tc but also offers new directions for designing and synthesizing more high-Tc hydride superconductors.
Collapse
Affiliation(s)
- Pengfei Shan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Ma
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Xin Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Mei Li
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Ziyi Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Hou
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China
| | - LiLi Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China
| | - Lifen Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Pengtao Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chuanlong Lin
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Bosen Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Zhongxian Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinguang Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Jiang Q, Chen L, Du M, Duan D. A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:493002. [PMID: 39168147 DOI: 10.1088/1361-648x/ad7217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
The theoretical predictions and experimental syntheses of hydrogen sulfide (H3S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.
Collapse
Affiliation(s)
- Qiwen Jiang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Ling Chen
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Mingyang Du
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Defang Duan
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
3
|
Sun Y, Zhong X, Liu H, Ma Y. Clathrate metal superhydrides under high-pressure conditions: enroute to room-temperature superconductivity. Natl Sci Rev 2024; 11:nwad270. [PMID: 38883291 PMCID: PMC11173197 DOI: 10.1093/nsr/nwad270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/16/2023] [Accepted: 09/21/2023] [Indexed: 06/18/2024] Open
Abstract
Room-temperature superconductivity has been a long-held dream of mankind and a focus of considerable interest in the research field of superconductivity. Significant progress has recently been achieved in hydrogen-based superconductors found in superhydrides (hydrides with unexpectedly high hydrogen contents) that are stabilized under high-pressure conditions and are not capturable at ambient conditions. Of particular interest is the discovery of a class of best-ever-known superconductors in clathrate metal superhydrides that hold the record for high superconductivity (e.g. T c = 250-260 K for LaH10) among known superconductors and have great promise to be those that realize the long-sought room-temperature superconductivity. In these peculiar clathrate superhydrides, hydrogen forms unusual 'clathrate' cages containing encaged metal atoms, of which such a kind was first reported in a calcium hexa-superhydride (CaH6) showing a measured high T c of 215 K under a pressure of 170 GPa. In this review, we aim to offer an overview of the current status of research progress on the clathrate metal superhydride superconductors, discuss the superconducting mechanism and highlight the key features (e.g. structure motifs, bonding features, electronic structure, etc.) that govern the high-temperature superconductivity. Future research direction along this line to find room-temperature superconductors will be discussed.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xin Zhong
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hanyu Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Chen LC, Luo T, Cao ZY, Dalladay-Simpson P, Huang G, Peng D, Zhang LL, Gorelli FA, Zhong GH, Lin HQ, Chen XJ. Synthesis and superconductivity in yttrium-cerium hydrides at high pressures. Nat Commun 2024; 15:1809. [PMID: 38418489 PMCID: PMC10901869 DOI: 10.1038/s41467-024-46133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Further increasing the critical temperature and/or decreasing the stabilized pressure are the general hopes for the hydride superconductors. Inspired by the low stabilized pressure associated with Ce 4f electrons in superconducting cerium superhydride and the high critical temperature in yttrium superhydride, we carry out seven independent runs to synthesize yttrium-cerium alloy hydrides. The synthetic process is examined by the Raman scattering and X-ray diffraction measurements. The superconductivity is obtained from the observed zero-resistance state with the detected onset critical temperatures in the range of 97-141 K. The upper critical field towards 0 K at pressure of 124 GPa is determined to be between 56 and 78 T by extrapolation of the results of the electrical transport measurements at applied magnetic fields. The analysis of the structural data and theoretical calculations suggest that the phase of Y0.5Ce0.5H9 in hexagonal structure with the space group of P63/mmc is stable in the studied pressure range. These results indicate that alloying superhydrides indeed can maintain relatively high critical temperature at relatively modest pressures accessible by laboratory conditions.
Collapse
Affiliation(s)
- Liu-Cheng Chen
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Tao Luo
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Zi-Yu Cao
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
- Center for Quantum Materials and Superconductivity (CQMS) and Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Ge Huang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Di Peng
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Li-Li Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Federico Aiace Gorelli
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
- National Institute of Optics (INO-CNR) and European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, 50019, Sesto Fiorentino (Florence), Italy
| | - Guo-Hua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Qing Lin
- School of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jia Chen
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Huang G, Peng D, Luo T, Chen LC, Dalladay-Simpson P, Cao ZY, Gorelli FA, Zhong GH, Lin HQ, Chen XJ. Synthesis of superconducting phase of La 0.5Ce 0.5H 10at high pressures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:075702. [PMID: 37918102 DOI: 10.1088/1361-648x/ad0915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Clathrate hydrideFm3-m-LaH10has been proven as the most extraordinary superconductor with the critical temperatureTcabove 250 K upon compression of hundreds of GPa in recent years. A general hope is to reduce the stabilization pressure and maintain the highTcvalue of the specific phase in LaH10. However, strong structural instability distortsFm3-mstructure and leads to a rapid decrease ofTcat low pressures. Here, we investigate the phase stability and superconducting behaviors ofFm3-m-LaH10with enhanced chemical pre-compression through partly replacing La by Ce atoms from both experiments and calculations. For explicitly characterizing the synthesized hydride, we choose lanthanum-cerium alloy with stoichiometry composition of 1:1. X-ray diffraction and Raman scattering measurements reveal the stabilization ofFm3-m-La0.5Ce0.5H10in the pressure range of 140-160 GPa. Superconductivity withTcof 175 ± 2 K at 155 GPa is confirmed with the observation of the zero-resistivity state and supported by the theoretical calculations. These findings provide applicability in the future explorations for a large variety of hydrogen-rich hydrides.
Collapse
Affiliation(s)
- Ge Huang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Di Peng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tao Luo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Liu-Cheng Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Philip Dalladay-Simpson
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Zi-Yu Cao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- Center for Quantum Materials and Superconductivity (CQMS) and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Federico A Gorelli
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- National Institute of Optics (INO-CNR) and European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, 50019 Sesto Fiorentino (Florence), Italy
| | - Guo-Hua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hai-Qing Lin
- School of Physics, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiao-Jia Chen
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston TX 77204, United States of America
| |
Collapse
|
6
|
Chen W, Huang X, Semenok DV, Chen S, Zhou D, Zhang K, Oganov AR, Cui T. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures. Nat Commun 2023; 14:2660. [PMID: 37160883 PMCID: PMC10170082 DOI: 10.1038/s41467-023-38254-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Ternary hydrides are regarded as an important platform for exploring high-temperature superconductivity at relatively low pressures. Here, we successfully synthesized the hcp-(La,Ce)H9-10 at 113 GPa with the initial La/Ce ratio close to 3:1. The high-temperature superconductivity was strikingly observed at 176 K and 100 GPa with the extrapolated upper critical field Hc2(0) reaching 235 T. We also studied the binary La-H system for comparison, which exhibited a Tc of 103 K at 78 GPa. The Tc and Hc2(0) of the La-Ce-H are respectively enhanced by over 80 K and 100 T with respect to the binary La-H and Ce-H components. The experimental results and theoretical calculations indicate that the formation of the solid solution contributes not only to enhanced stability but also to superior superconducting properties. These results show how better superconductors can be engineered in the new hydrides by large addition of alloy-forming elements.
Collapse
Affiliation(s)
- Wuhao Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Dmitrii V Semenok
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Su Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Di Zhou
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Kexin Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bldg. 1, Moscow, 121205, Russia
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Chen W, Semenok DV, Huang X, Shu H, Li X, Duan D, Cui T, Oganov AR. High-Temperature Superconducting Phases in Cerium Superhydride with a T_{c} up to 115 K below a Pressure of 1 Megabar. PHYSICAL REVIEW LETTERS 2021; 127:117001. [PMID: 34558917 DOI: 10.1103/physrevlett.127.117001] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/30/2021] [Indexed: 05/25/2023]
Abstract
The discoveries of high-temperature superconductivity in H_{3}S and LaH_{10} have excited the search for superconductivity in compressed hydrides, finally leading to the first discovery of a room-temperature superconductor in a carbonaceous sulfur hydride. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here, we experimentally discovered superconductivity in two new phases, Fm3[over ¯]m-CeH_{10} (SC-I phase) and P6_{3}/mmc-CeH_{9} (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero and decreased critical temperature in deuterated samples and in external magnetic field. SC-I has T_{c}=115 K at 95 GPa, showing an expected decrease in further compression due to the decrease of the electron-phonon coupling (EPC) coefficient λ (from 2.0 at 100 GPa to 0.8 at 200 GPa). SC-II has T_{c}=57 K at 88 GPa, rapidly increasing to a maximum T_{c}∼100 K at 130 GPa, and then decreasing in further compression. According to the theoretical calculation, this is due to a maximum of λ at the phase transition from P6_{3}/mmc-CeH_{9} into a symmetry-broken modification C2/c-CeH_{9}. The pressure-temperature conditions of synthesis affect the actual hydrogen content and the actual value of T_{c}. Anomalously low pressures of stability of cerium superhydrides make them appealing for studies of superhydrides and for designing new superhydrides with stability at even lower pressures.
Collapse
Affiliation(s)
- Wuhao Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Dmitrii V Semenok
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bldg. 1 Moscow, Russia 121205
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Haiyun Shu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Xin Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bldg. 1 Moscow, Russia 121205
| |
Collapse
|
8
|
Yao S, Wang C, Liu S, Jeon H, Cho JH. Formation Mechanism of Chemically Precompressed Hydrogen Clathrates in Metal Superhydrides. Inorg Chem 2021; 60:12934-12940. [PMID: 34369748 DOI: 10.1021/acs.inorgchem.1c01340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, the experimental discovery of high-Tc superconductivity in compressed hydrides H3S and LaH10 at megabar pressures has triggered searches for various superconducting superhydrides. It was experimentally observed that thorium superhydrides, ThH10 and ThH9, are stabilized at much lower pressures than LaH10. Based on first-principles density functional theory calculations, we reveal that the isolated Th frameworks of ThH10 and ThH9 have relatively more excess electrons in interstitial regions than the La framework of LaH10. Such interstitial excess electrons easily participate in the formation of the anionic H cage surrounding the metal atom. The resulting Coulomb attraction between cationic Th atoms and anionic H cages is estimated to be stronger than the corresponding one of LaH10, thereby giving rise to larger chemical precompressions in ThH10 and ThH9. Such a formation mechanism of H clathrates can also be applied to other superhydrides such as CeH9, PrH9, and NdH9. Our findings demonstrate that interstitial excess electrons in the isolated metal frameworks of high-pressure superhydrides play an important role in generating the chemical precompression of H clathrates.
Collapse
Affiliation(s)
- Shichang Yao
- Department of Physics, Research Institute for Natural Science, and Institute for High Pressure at Hanyang University, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea
| | - Chongze Wang
- Department of Physics, Research Institute for Natural Science, and Institute for High Pressure at Hanyang University, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea
| | - Shuyuan Liu
- Department of Physics, Research Institute for Natural Science, and Institute for High Pressure at Hanyang University, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea
| | - Hyunsoo Jeon
- Department of Physics, Research Institute for Natural Science, and Institute for High Pressure at Hanyang University, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea
| | - Jun-Hyung Cho
- Department of Physics, Research Institute for Natural Science, and Institute for High Pressure at Hanyang University, Hanyang University, 222 Wangsimni-ro, Seongdong-Ku, Seoul 04763, Republic of Korea
| |
Collapse
|