1
|
Krmar RT, Franzén S, Karlsson L, Strandberg H, Törnroth‐Horsefield S, Andresen JK, Jensen BL, Carlström M, Frithiof R. Effect of controlled hypotensive hemorrhage on plasma sodium levels in anesthetized pigs: An exploratory study. Physiol Rep 2023; 11:e15886. [PMID: 38010195 PMCID: PMC10680582 DOI: 10.14814/phy2.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Perioperative hyponatremia, due to non-osmotic release of the antidiuretic hormone arginine vasopressin, is a serious electrolyte disorder observed in connection with many types of surgery. Since blood loss during surgery contributes to the pathogenesis of hyponatremia, we explored the effect of bleeding on plasma sodium using a controlled hypotensive hemorrhage pig model. After 30-min baseline period, hemorrhage was induced by aspiration of blood during 30 min at mean arterial pressure <50 mmHg. Thereafter, the animals were resuscitated with retransfused blood and a near-isotonic balanced crystalloid solution and monitored for 180 min. Electrolyte and water balances, cardiovascular response, renal hemodynamics, and markers of volume regulation and osmoregulation were investigated. All pigs (n = 10) developed hyponatremia. All animals retained hypotonic fluid, and none could excrete net-free water. Urinary excretion of aquaporin 2, a surrogate marker of collecting duct responsiveness to antidiuretic hormone, was significantly reduced at the end of the study, whereas lysine vasopressin, i.e., the pig antidiuretic hormone remained high. In this animal model, hyponatremia developed due to net positive fluid balance and generation of electrolyte-free water by the kidneys. A decreased urinary aquaporin 2 excretion may indicate an escape from antidiuresis.
Collapse
Affiliation(s)
- Rafael T. Krmar
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Stephanie Franzén
- Department of Surgical Sciences, anesthesiology and Intensive CareUppsala UniversityUppsalaSweden
| | - Leif Karlsson
- Department of Women's and Children's HealthKarolinska Institutet, Pediatric Endocrinology Unit, Karolinska University HospitalStockholmSweden
| | - Helin Strandberg
- Department of Biochemistry and Structural BiologyLund UniversityLundSweden
| | | | - Jesper K. Andresen
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- Department of UrologyOdense University HospitalOdenseDenmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- Department of UrologyOdense University HospitalOdenseDenmark
| | - Mattias Carlström
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Robert Frithiof
- Department of Surgical Sciences, anesthesiology and Intensive CareUppsala UniversityUppsalaSweden
| |
Collapse
|
2
|
Karimi F, Nematbakhsh M. Renal vascular responses to angiotensin II infusion in two kidneys-one clip hypertensive rats under partial ischemia/reperfusion with and without ischemia preconditioning: the roles of AT1R blockade and co-blockades of AT1R and MasR. Res Pharm Sci 2023; 18:392-403. [PMID: 37614612 PMCID: PMC10443668 DOI: 10.4103/1735-5362.378086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The renin-angiotensin system activation, partial ischemia/reperfusion (IR) injury, and hypertension contribute to the development of acute kidney injury. The study aims to look at the vascular responses of angiotensin II (Ang II) during Ang II type 1 receptor (AT1R) blockade (losartan) or co-blockades of AT1R and Mas receptor (A779) in two kidneys one clip (2K1C) hypertensive rats which subjected to partial IR injury with and without ischemia preconditioning (IPC). Experimental approach Thirty-three 2K1C male Wistar rats with systolic blood pressure ≥ 150 mmHg were divided into three groups of sham, IR, and IPC + IR divided into two sub-groups receiving losartan or losartan + A779. The IR group had 45 min partial kidney ischemia, while the IPC + IR group had two 5 min cycles of partial ischemia followed by 10 min of reperfusion and then 45 min of partial kidney ischemia followed by reperfusion. The sham group was subjected to similar surgical procedures except for IR or IPC. Findings/Results Ang II increased mean arterial pressure in all the groups, but there were no significant differences between the sub-groups. A significant difference was observed in the renal blood flow response to Ang II between two sub-groups of sham and IR groups treated with AT1R blockade alone or co-blockades of AT1R + A779. Conclusion and implications These findings demonstrated the significance of AT1R and Mas receptor following partial renal IR in the renal blood flow responses to Ang II in 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mehdi Nematbakhsh
- Water & Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Brignone J, Jensen M, Jensen BL, Assersen KB, Goetze JP, Jødal L, Andersen TB, Magnusdottir SO, Kloster B, Jønler M, Lund L. Protective effect of sacubitril/valsartan (Entresto) on kidney function and filtration barrier injury in a porcine model of partial nephrectomy. Nephrol Dial Transplant 2023; 38:80-92. [PMID: 35704678 DOI: 10.1093/ndt/gfac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
Kidney surgery often includes organ ischaemia with a risk of acute kidney injury. The present study tested if treatment with the combined angiotensin II-angiotensin II receptor type 1 and neprilysin blocker Entresto (LCZ696, sacubitril/valsartan) protects filtration barrier and kidney function after ischaemia and partial nephrectomy (PN) in pigs. Single kidney glomerular filtration rate (GFR) by technetium-99m diethylene-triamine-pentaacetate clearance was validated (n = 6). Next, four groups of pigs were followed for 15 days (n = 24) after PN (one-third right kidney, 60 min ischaemia) + Entresto (49/51 mg/day; n = 8), PN + vehicle (n = 8), sham + Entresto (49/51 mg/day; n = 4) and sham + vehicle (n = 4). GFR, diuresis and urinary albumin were measured at baseline and from each kidney after 15 days. The sum of single-kidney GFR (right 25 ± 6 mL/min, left 31 ± 7 mL/min) accounted for the total GFR (56 ± 14 mL/min). Entresto had no effect on baseline blood pressure, p-creatinine, mid-regional pro-atrial natriuretic peptide (MR-proANP), heart rate and diuresis. After 15 days, Entresto increased GFR in the uninjured kidney (+23 ± 6 mL/min, P < .05) and reduced albuminuria from both kidneys. In the sham group, plasma MR-proANP was not altered by Entresto; it increased to similar levels 2 h after surgery with and without Entresto. Fractional sodium excretion increased with Entresto. Kidney histology and kidney injury molecule-1 in cortex tissue were not different. In conclusion, Entresto protects the filtration barrier and increases the functional adaptive response of the uninjured kidney.
Collapse
Affiliation(s)
- Juan Brignone
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mia Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| | - Kasper Bostlund Assersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jødal
- Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Brian Kloster
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Jønler
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Lund
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Estradiol Supplement or Induced Hypertension May Attenuate the Angiotensin II Type 1 Receptor Antagonist-Promoted Renal Blood Flow Response to Graded Angiotensin II Administration in Ovariectomized Rats. J Renin Angiotensin Aldosterone Syst 2022; 2022:3223008. [PMID: 35859805 PMCID: PMC9270140 DOI: 10.1155/2022/3223008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Backgrounds. Estrogen replacement therapy (ERT) and hypertension may influence females’ renin-angiotensin system (RAS) and its components. The angiotensin II (Ang II) type 1 receptor (AT1R) antagonist (losartan) may promote renal blood flow (RBF), and it is widely used in the clinic to control hypertension. The main objective of this study was the effects of estradiol or induced hypertension on RBF response to Ang II in losartan-treated ovariectomized (OVX) rats. Methods. Two groups of OVX rats were treated with placebo (group 1) and estradiol (group 2) for period of four weeks, and another group of OVX rats was subjected to induce hypertension by two-kidney one clip (2K1C) model (group 3). All the groups were subjected to the surgical procedure under anesthesia, and AT1R was blocked by losartan. RBF and renal vascular resistance (RVR) responses to Ang II administration were determined and compared. Results. Mean arterial (MAP) and renal perfusion (RPP) pressures in group 3 and uterus weight (UT) in group 2 were significantly more than other groups (
). Ang II infusion resulted in dose-related percentage change increase in RBF and decrease in RVR. However, these responses in the OVX-estradiol and OVX-hypertensive rats were significantly lower than in the OVX-control group (
). For instance, at the dose of 1000 ng/kg/min of Ang II administration, the percentage change of RBF was
,
, and
in the groups of 1 to 3, respectively. Conclusion. Losartan prescription in some conditions such as hypertension or ERT could worsen RBF and RVR responses to Ang II.
Collapse
|
5
|
Abstract
Approximately 7% of patients undergoing non-cardiac surgery with general anesthesia develop postoperative acute kidney injury (AKI). It is well-known that general anesthesia may have an impact on renal function and water balance regulation, but the mechanisms and potential differences between anesthetics are not yet completely clear. Recently published large animal studies have demonstrated that volatile (gas) anesthesia stimulates the renal sympathetic nervous system more than intravenous propofol anesthesia, resulting in decreased water and sodium excretion and reduced renal perfusion and oxygenation. Whether this is the case also in humans remains to be clarified. Increased renal sympathetic nerve activity may impair renal excretory function and oxygenation and induce structural injury in ischemic AKI models and could therefore be a contributing factor to AKI in the perioperative setting. This review summarizes anesthetic agents' effects on the renal sympathetic nervous system that may be important in the pathogenesis of perioperative AKI.
Collapse
|
6
|
Franzén S, Näslund E, Wang H, Frithiof R. Prevention of hemorrhage-induced renal vasoconstriction and hypoxia by angiotensin II type 1 receptor antagonism in pigs. Am J Physiol Regul Integr Comp Physiol 2021; 321:R12-R20. [PMID: 34009032 DOI: 10.1152/ajpregu.00073.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Angiotensin II (ANG II) is a potent vasoconstrictor and may reduce renal blood flow (RBF), causing renal hypoxia. Hypotensive hemorrhage elevates plasma ANG II levels and is associated with increased risk of acute kidney injury. We hypothesized that ANG II antagonism prevents renal vasoconstriction and hypoxia caused by hemorrhage. Pigs were anaesthetized, surgically prepared, and randomized to intravenous losartan (1.5 mg·kg-1·h-1, n = 8) or an equal volume of intravenous Ringer acetate (vehicle-treated, n = 8). Hemorrhage was induced by continuous aspiration of blood to reach and sustain mean arterial pressure of <50 mmHg for 30 min. Plasma ANG II levels, hemodynamics and oxygenation were assessed 60 min prehemorrhage, 30-min after the start of hemorrhage, and 60 min posthemorrhage. Erythropoietin mRNA was analyzed in cortical and medullary tissue sampled at the end of the experiment. Hypotensive hemorrhage increased plasma ANG II levels and decreased RBF and oxygen delivery in both groups. Losartan-treated animals recovered in RBF and oxygen delivery, whereas vehicle-treated animals had persistently reduced RBF and oxygen delivery. In accordance, renal vascular resistance increased over time post hemorrhage in vehicle-treated animals but was unchanged in losartan-treated animals. Renal oxygen extraction rate and cortical erythropoietin mRNA levels increased in the vehicle group but not in the losartan group. In conclusion, ANG II antagonism alleviates prolonged renal vasoconstriction and renal hypoxia in a large animal model of hypotensive hemorrhage.
Collapse
Affiliation(s)
- Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Centre for Research and Development, Uppsala University/Region Gävleborg, Gavle, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Infections and Defenses, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|