1
|
Varner E, Gries R, Takács S, Jackson H, Purdey L, Gofredo D, Bibal A, Gries G. Identification and field testing of sex-attractant semiochemicals produced by male deer mice, Peromyscus maniculatus. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241257. [PMID: 39698158 PMCID: PMC11651908 DOI: 10.1098/rsos.241257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
Following previous reports that male deer mice, Peromyscus maniculatus, produce chemical signals that attract conspecific females, we analysed and field-tested sex-attractant semiochemicals (message-bearing chemicals) of male deer mice. Field traps baited with urine- and faeces-soiled bedding of male mice captured adult female, but not male, mice, indicating dissemination of sex-attractant semiochemicals from the males' excreta. Analysing excreta headspace volatiles of both males and females by gas chromatography-mass spectrometry revealed that 5-methyl-2-hexanone was male-specific, and that eight other ketones (3-methyl-2-pentanone, 2-hexanone, 4-heptanone, 2-heptanone, 6-methyl-2-heptanone, 3-octanone, 2-octanone, 2-nonanone) were 2.6-5.6 times more abundant in male, than in female, samples. In a field experiment with paired trap boxes, treatment boxes baited with the synthetic ketone lure captured 3.4 times more females (17 : 5) and 1.6 times fewer males (5 : 8) than corresponding unbaited boxes. In a follow-up paired-trap field experiment, treatment boxes baited with both the ketone lure and synthetic testosterone captured 8 times more mature females and 2.3 times more immature females, but 9 times fewer immature males, than control boxes baited only with the ketone lure, all indicating that testosterone is a synergistic sex-attractant semiochemical. As previously shown in house mice, Mus musculus, and brown rats, Rattus norvegicus, sex-attractant semiochemicals of male deer mice comprise both volatile and sex steroid components.
Collapse
Affiliation(s)
- Elana Varner
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Stephen Takács
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Hanna Jackson
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Leah Purdey
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Daniella Gofredo
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Alishba Bibal
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British ColumbiaV5A 1S6, Canada
| |
Collapse
|
2
|
Wang WC, Li ZM, Chen Y, Zhang, JH, Zhang JX, Zhang YH. Species recognition and the divergences in the chemical and ultrasonic signals between two coexisting Rattus species. Curr Zool 2024; 70:531-538. [PMID: 39176055 PMCID: PMC11336677 DOI: 10.1093/cz/zoad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2024] Open
Abstract
The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species. In the genus Rattus, species are morphologically similar and multiple species often coexist. Here, we investigated the interspecific recognition and signal differentiation of two sympatric rat species, the brown rat (Rattus norvegicus, RN) and the Asian house rat (Rattus tanezumi, RT). In a two-way choice test, both RN and RT females showed a preference for conspecific male rats to heterospecific ones. RT females showed a significant preference for accessible urine of males of same species to those of other species, but not for the inaccessible urine. On the other hand, there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species. Sodium dodecyl sulphate‒polyacrylamide gel electrophoresis (SDS‒PAGE) and isoelectric focusing electrophoresis unveiled that major urinary proteins (MUPs) in voided urine were more highly expressed in RN males versus RT males. The interspecific differences of urinary volatile compounds were also discussed. In conclusion, female rats had the ability to distinguish between males of either species.
Collapse
Affiliation(s)
- Wei-Chao Wang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ming Li
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Zhang,
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yao-Hua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Poissenot K, Trouillet AC, Trives E, Moussu C, Chesneau D, Meunier M, Lattard V, Chorfa A, Saez F, Drevet J, Le Danvic C, Nagnan-Le Meillour P, Chamero P, Keller M. Sexual discrimination and attraction through scents in the water vole, Arvicola terrestris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:431-441. [PMID: 37690081 DOI: 10.1007/s00359-023-01671-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.
Collapse
Affiliation(s)
- Kévin Poissenot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Elliott Trives
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Chantal Moussu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Didier Chesneau
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Meunier
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Areski Chorfa
- GReD, Université Clermont Auvergne, CNRS, Inserm, CRBC, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD, Université Clermont Auvergne, CNRS, Inserm, CRBC, Clermont-Ferrand, France
| | - Joël Drevet
- GReD, Université Clermont Auvergne, CNRS, Inserm, CRBC, Clermont-Ferrand, France
| | | | | | - Pablo Chamero
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
4
|
Fischer A, Roman-Torres AC, Vurdela J, Lee Y, Bahar N, Gries R, Alamsetti S, Chen H, Gries G. Non-targeted metabolomics aids in sex pheromone identification: a proof-of-concept study with the triangulate cobweb spider, Steatoda triangulosa. Sci Rep 2023; 13:18426. [PMID: 37891331 PMCID: PMC10611747 DOI: 10.1038/s41598-023-44948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Targeted metabolomics has been widely used in pheromone research but may miss pheromone components in study organisms that produce pheromones in trace amount and/or lack bio-detectors (e.g., antennae) to readily locate them in complex samples. Here, we used non-targeted metabolomics-together with high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-MS, and behavioral bioassays-to unravel the sex pheromone of the triangulate cobweb spider, Steatoda triangulosa. A ternary blend of three contact pheromone components [N-4-methylvaleroyl-O-isobutyroyl-L-serine (5), N-3-methylbutyryl-O-isobutyroyl-L-serine (11), and N-3-methylbutyryl-O-butyroyl-L-serine (12)] elicited courtship by S. triangulosa males as effectively as female web extract. Hydrolysis of 5, 11 and 12 at the ester bond gave rise to two mate-attractant pheromone components [butyric acid (7) and isobutyric acid (8)] which attracted S. triangulosa males as effectively as female webs. Pheromone components 11 and 12 are reported in spiders for the first time, and were discovered only through the use of non-targeted metabolomics and GC-MS. All compounds resemble pheromone components previously identified in widow spiders. Our study provides impetus to apply non-targeted metabolomics for pheromone research in a wide range of animal taxa.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of General and Systematic Zoology, University of Greifswald, Greifswald, Germany.
| | - Andrea C Roman-Torres
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Jane Vurdela
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Yerin Lee
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Nastaran Bahar
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Santosh Alamsetti
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hongwen Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
5
|
Zhigarev IA, Alpatov VV, Shitikov DA, Nekrasova MV, Alekseeva OG, Kotenkova EV. Repellent effect of synanthropic house mouse urine odor on small forest mammals. Curr Zool 2022. [DOI: 10.1093/cz/zoac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
In this study we examined an effect of synanthropic house mouse (Mus musculus) urine odor on catching probability of small mammals to live traps. We conducted a series of field experiments in August 2016 and 2017 in natural forest of northwestern Moscow Region (Russia). Small mammals were trapped at two 4-ha fields using capture–mark–recapture technique by setting 200 live traps (100 points, 2 traps per a point) within each field. One trap in each pair was odorless (control) with bait only, while the other one was odor-baited with 20 μL of the urine of synanthropic house mouse. Further analysis was based on the data collected from two rodent species (bank vole Myodes glareolus, Herb field mouse Apodemus uralensis) and three shrew species (common shrew Sorex araneus, Laxmann's shrew S. caecutiens, and Eurasian pygmy shrew S. minutus). As a result, only bank voles significantly avoided odor-baited live traps. Using Generalized Linear Mixed Models, we showed that the choice of a trap by bank voles depended on their age, while the probability of repeated capture to a certain live trap was related to their prior experience. We discuss a possible role of components of synanthropic house mouse urine in population management of exoanthropic small mammals.
Collapse
Affiliation(s)
- Igor A Zhigarev
- Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow Pedagogical State University , Moscow, Russia
| | - Vasiliy V Alpatov
- Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow Pedagogical State University , Moscow, Russia
- Department of Zoology, Ecology and Nature Conservation, K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology , Moscow, Russia
| | - Dmitry A Shitikov
- Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow Pedagogical State University , Moscow, Russia
| | - Maria V Nekrasova
- Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow Pedagogical State University , Moscow, Russia
- Laboratory for Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky prospect , Moscow, Russia
| | - Olga G Alekseeva
- Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow Pedagogical State University , Moscow, Russia
| | - Elena V Kotenkova
- Laboratory for Behaviour and Behavioural Ecology of Mammals, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky prospect , Moscow, Russia
| |
Collapse
|
6
|
Sex Differences in Mouse Exploratory Behaviour to Fel d 1, a Cat ABP-Like Protein. Animals (Basel) 2021; 11:ani11113149. [PMID: 34827881 PMCID: PMC8614430 DOI: 10.3390/ani11113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Fel d 1 is a cat secreted protein, known as the main cat allergen, that is abundantly released and found in their habitat. Cats are one of the main predators of rodents and have been historically used to control rodent populations in human habitats. We assumed that laboratory mice, as a model of wild mice, would be able to detect and avoid this abundant cat molecule as a mechanism to increase chances of survival. In our study, we compared mice exploratory behaviours facing Fel d 1, a fox faeces molecule (TMT) as a positive control, and a negative control (purified water). We found that mice did not avoid Fel d 1 as we expected; however, male mice remained in the area with Fel d 1 longer than females. These results give interesting insights about how sexes can react differently to a predator stimulus and give support to the use of both sexes in behavioural studies, and more precisely in predator-prey interactions research Abstract Fel d 1 is a cat protein abundantly released and found in their habitat and is closely related to mouse androgen-binding proteins (ABPs). We hypothesized that mice have developed chemical communication mechanisms to detect and avoid this protein. We tested purified natural Fel d 1, a fox faeces molecule (TMT) as a positive control, and a negative control (purified water) in three different mouse groups (n = 14 each) to evaluate exploratory behaviour and stress responses. The mice did not show clear avoidance or stress responses to Fel d 1. Our results demonstrated a sex-treatment interaction for Fel d 1, with males spending more time in the areas treated with Fel d 1 than in the untreated areas (p = 0.018). This sex-treated area interaction was also not observed for either the blank or TMT. These results suggest that Fel d 1 from domestic cats could be recognized differently by male and female mice. These sex differences could be linked to the sexual role of ABP proteins and the ABP-like characteristics of Fel d 1.
Collapse
|
7
|
Vocalizations of infant brown rats, but not infant house mice, enhance rodent captures in sex pheromone-baited traps. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|