1
|
Golmohammadi M, Ivraghi MS, Hasan EK, Huldani H, Zamanian MY, Rouzbahani S, Mustafa YF, Al-Hasnawi SS, Alazbjee AAA, Khalajimoqim F, Khalaj F. Protective effects of pioglitazone in renal ischemia-reperfusion injury (RIRI): focus on oxidative stress and inflammation. Clin Exp Nephrol 2024; 28:955-968. [PMID: 38935212 DOI: 10.1007/s10157-024-02525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | - Huldani Huldani
- Department of Physiology, Faculty of Medicine Lambung, Mangkurat University, South Kalimantan, Banjarmasin, Indonesia
| | - Mohammad Yasin Zamanian
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Shiva Rouzbahani
- Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Department of Community Medicine and Family Physician, School of Medicine, Isfahan University of Medical Sciences, Hezar Jarib Blvd, Isfahan, Iran
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Faranak Khalajimoqim
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Murata R, Watanabe H, Iwakiri R, Chikamatsu M, Satoh T, Noguchi I, Yasuda K, Nishinoiri A, Yoshitake T, Nosaki H, Maeda H, Maruyama T. Albumin-fused thioredoxin ameliorates high-fat diet-induced non-alcoholic steatohepatitis. Heliyon 2024; 10:e25485. [PMID: 38352801 PMCID: PMC10861950 DOI: 10.1016/j.heliyon.2024.e25485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The pathogenesis of non-alcoholic steatohepatitis (NASH) involves the simultaneous interaction of multiple factors such as lipid accumulation, oxidative stress, and inflammatory response. Here, the effect of human serum albumin (HSA) fused to thioredoxin (Trx) on NASH was investigated. Trx is known to have anti-oxidative, anti-inflammatory, and anti-apoptotic effects. However, Trx is a low molecular weight protein and is rapidly eliminated from the blood. To overcome the low availability of Trx, HSA-Trx fusion protein was produced and evaluated the therapeutic effect on high-fat diet (HFD)-induced NASH model mice. HSA-Trx administered before the formation of NASH pathology showed it to have a preventive effect. Specifically, HSA-Trx was found to prevent the pathological progression to NASH by suppressing lipid accumulation, liver injury markers, and liver fibrosis. When HSA-Trx was administered during the early stage of NASH there was a marked reduction in lipid accumulation, inflammation, and fibrosis in the liver, indicating that HSA-Trx ameliorates NASH pathology. The findings indicate that HSA-Trx influences multiple pathological factors, such as oxidative stress, inflammation, and apoptosis, to elicit a therapeutic benefit. HSA-Trx also inhibited palmitic acid-induced lipotoxicity in HepG2 cells. Taken together, these results indicate that HSA-Trx has potential as a therapeutic agent for NASH pathology.
Collapse
Affiliation(s)
- Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayuko Chikamatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Nishinoiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takuma Yoshitake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Gu Y, Li Z, Li H, Yi X, Liu X, Zhang Y, Gong S, Yu T, Li L. Exploring the efficacious constituents and underlying mechanisms of sini decoction for sepsis treatment through network pharmacology and multi-omics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155212. [PMID: 38029626 DOI: 10.1016/j.phymed.2023.155212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Traditional Chinese medicine prescription sini decoction (SND) can alleviate inflammation, improve microcirculation, and modulate immune status in sepsis patients. However, its underlying mechanisms remain unclear, and therapeutic effects may vary among individuals. PURPOSE Through a comprehensive and systematic network pharmacology analysis, the purpose of this study is to investigate the therapeutic mechanisms of SND in treating sepsis. METHODS An analysis of WGCNA identified CX3CR1 as a key gene influencing sepsis prognosis. A drug-active component-target network for SND was created using the traditional Chinese medicine systems pharmacology (TCMSP) database and Cytoscape software. Shared targets between SND and CX3CR1 high-expression gene modules were found through the GEO database. Gene module functionality was analyzed using GO, KEGG, GSEA, and GSVA. Unsupervised clustering of sepsis patients was performed based on the ferroptosis gene set, and immune cell interactions and mechanisms were explored using CIBERSORT, single-cell sequencing, and intercellular communication analysis. RESULTS This study demonstrates that high expression of CX3CR1 improves survival rates in sepsis patients and is associated with immune cell signaling pathways. SND contains 116 active components involved in oxidative stress and lipid metabolism pathways. HMOX1, a co-expressed gene in SND and CX3CR1 high-expression gene module, plays a crucial role in sepsis survival. Unsupervised clustering analysis classified sepsis patients into three clusters based on the ferroptosis gene set, revealing differences in immune cell expression and involvement in heme metabolism pathways. Notably, intercellular interactions among immune cells primarily occur through paracrine and autocrine mechanisms in MIF, GALECTIN, and IL16 signaling pathways, modulating the immune-inflammatory microenvironment in sepsis. CONCLUSIONS This study identifies CX3CR1 as a crucial molecule impacting sepsis prognosis through WGCNA analysis. It reveals that SND's active component, quercetin and kaempferol, target HMOX1 via related pathways to regulate heme metabolism, reduce inflammation, inhibit ferroptosis, and improve immune function, ultimately improving sepsis prognosis. These findings offer a solid pharmacological foundation and potential therapeutic targets for SND in treating sepsis.
Collapse
Affiliation(s)
- Yang Gu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Ziying Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Han Li
- Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoling Yi
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Xun Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Yan Zhang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China
| | - Shu Gong
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Tao Yu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China.
| | - Li Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510289, PR China.
| |
Collapse
|
4
|
Matsuura R, Doi K, Rabb H. Acute kidney injury and distant organ dysfunction-network system analysis. Kidney Int 2023; 103:1041-1055. [PMID: 37030663 DOI: 10.1016/j.kint.2023.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Acute kidney injury (AKI) occurs in about half of critically ill patients and associates with high in-hospital mortality, increased long-term mortality post-discharge and subsequent progression to chronic kidney disease. Numerous clinical studies have shown that AKI is often complicated by dysfunction of distant organs, which is a cause of the high mortality associated with AKI. Experimental studies have elucidated many mechanisms of AKI-induced distant organ injury, which include inflammatory cytokines, oxidative stress and immune responses. This review will provide an update on evidence of organ crosstalk and potential therapeutics for AKI-induced organ injuries, and present the new concept of a systemic organ network to balance homeostasis and inflammation that goes beyond kidney-crosstalk with a single distant organ.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, the University of Tokyo Hospital.
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine
| |
Collapse
|
5
|
Yao TT, Zhang Y, He RL, Lv X, He YJ, Li MY, Han YY, Long LZ, Jiang GL, Cheng XY, Hu GY, Li QB, Tao LJ, Meng J. Mefunidone ameliorates lipopolysaccharide-induced acute lung injury through inhibiting MAPK signaling pathway and enhancing Nrf2 pathway. Int Immunopharmacol 2022; 113:109263. [PMID: 36334370 DOI: 10.1016/j.intimp.2022.109263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Acute lung injury (ALI) is a life-threatening disease which has high mortality and lacks effective pharmacological treatments. Excessive inflammation and oxidative stress are the key pathogenesis of ALI. Mefunidone (MFD), a novel small molecule compound, displayed anti-inflammation and anti-oxidative stress effects on streptozocin (STZ) and db/db mice in our previous studies. In this study, we aimed to investigate the effects of MFD on lipopolysaccharide (LPS)-induced ALI and explore the potential molecular mechanisms. METHODS We investigated the effects of MFD on LPS-induced ALI mouse model and LPS-stimulated immortalized mouse bone marrow-derived macrophages (iBMDMs). RESULTS MFD could alleviate pulmonary structure disorder and attenuate pulmonary neutrophils infiltration induced by LPS. MFD could also decreased proinflammatory cytokines release and reduce reactive oxygen species (ROS) generation stimulated by LPS. Further, MFD could significantly reduce LPS-induced phosphorylation levels of mitogen-activated protein kinase (MAPK), increase expression of nuclear factor-erythroid 2 related factor 2 (Nrf2) and restore the expressions of antioxidant enzymes. CONCLUSION Our results firstly supported that MFD effectively protected LPS-induced ALI against inflammation and oxidative stress through inhibiting MAPK signaling pathway and activating Nrf2 pathway.
Collapse
Affiliation(s)
- Ting-Ting Yao
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Ling He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Jun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng-Yu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan-Yuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Zhi Long
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Liang Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Yun Cheng
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Gao-Yun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Qian-Bin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Li-Jian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China; National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China; National International Collaborative Research Center for Medical Metabolomics, Changsha, China.
| |
Collapse
|
6
|
Mishra M, Nichols L, Dave AA, Pittman EH, Cheek JP, Caroland AJV, Lotwala P, Drummond J, Bridges CC. Molecular Mechanisms of Cellular Injury and Role of Toxic Heavy Metals in Chronic Kidney Disease. Int J Mol Sci 2022; 23:11105. [PMID: 36232403 PMCID: PMC9569673 DOI: 10.3390/ijms231911105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease that affects millions of adults every year. Major risk factors include diabetes, hypertension, and obesity, which affect millions of adults worldwide. CKD is characterized by cellular injury followed by permanent loss of functional nephrons. As injured cells die and nephrons become sclerotic, remaining healthy nephrons attempt to compensate by undergoing various structural, molecular, and functional changes. While these changes are designed to maintain appropriate renal function, they may lead to additional cellular injury and progression of disease. As CKD progresses and filtration decreases, the ability to eliminate metabolic wastes and environmental toxicants declines. The inability to eliminate environmental toxicants such as arsenic, cadmium, and mercury may contribute to cellular injury and enhance the progression of CKD. The present review describes major molecular alterations that contribute to the pathogenesis of CKD and the effects of arsenic, cadmium, and mercury on the progression of CKD.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Larry Nichols
- Department of Pathology and Clinical Sciences Education, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Aditi A. Dave
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Elizabeth H Pittman
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - John P. Cheek
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Anasalea J. V. Caroland
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Purva Lotwala
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - James Drummond
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Christy C. Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
7
|
Different Acute Kidney Injury Patterns after Renal Ischemia Reperfusion Injury and Extracorporeal Membrane Oxygenation in Mice. Int J Mol Sci 2022; 23:ijms231911000. [PMID: 36232304 PMCID: PMC9570202 DOI: 10.3390/ijms231911000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The use of extracorporeal membrane oxygenation (ECMO) is associated with acute kidney injury (AKI) in thoracic organ transplantation. However, multiple other factors contribute to AKI development after these procedures such as renal ischemia-reperfusion injury (IRI) due to hypo-perfusion of the kidney during surgery. In this study, we aimed to explore the kidney injury patterns in mouse models of ECMO and renal IRI. Kidneys of C57BL/6 mice were examined after moderate (35 min) and severe (45 min) unilateral transient renal pedicle clamping and 2 h of veno-venous ECMO. Renal injury markers, neutrophil infiltration, tubular transport function, pro-inflammatory cytokines, and renal heme oxygenase-1 (HO-1) expression were determined by immunofluorescence and qPCR. Both procedures caused AKI, but with different injury patterns. Severe neutrophil infiltration of the kidney was evident after renal IRI, but not following ECMO. Tubular transport function was severely impaired after renal IRI, but preserved in the ECMO group. Both procedures caused upregulation of pro-inflammatory cytokines in the renal tissue, but with different time kinetics. After ECMO, but not IRI, HO-1 was strongly induced in tubular cells indicating contact with hemolysis-derived proteins. After IRI, HO-1 was expressed on infiltrating myeloid cells in the tubulo-interstitial space. In conclusion, renal IRI and ECMO both caused AKI, but kidney damage after renal IRI was more pronounced including severe neutrophil infiltration and tubular transport impairment. Enhanced HO-1 expression in tubular cells after ECMO encourages limitation of hemolysis as a therapeutic approach to reduce ECMO-associated AKI.
Collapse
|
8
|
Kasuno K, Yodoi J, Iwano M. Urinary Thioredoxin as a Biomarker of Renal Redox Dysregulation and a Companion Diagnostic to Identify Responders to Redox-Modulating Therapeutics. Antioxid Redox Signal 2022; 36:1051-1065. [PMID: 34541903 DOI: 10.1089/ars.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The development and progression of renal diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), are the result of heterogeneous pathophysiology that reflects a range of environmental factors and, in a lesser extent, genetic mutations. The pathophysiology specific to most kidney diseases is not currently identified; therefore, these diseases are diagnosed based on non-pathological factors. For that reason, pathophysiology-based companion diagnostics for selection of pathophysiology-targeted treatments have not been available, which impedes personalized medicine in kidney disease. Recent Advances: Pathophysiology-targeted therapeutic agents are now being developed for the treatment of redox dysregulation. Redox modulation therapeutics, including bardoxolone methyl, suppresses the onset and progression of AKI and CKD. On the other hand, pathophysiology-targeted diagnostics for renal redox dysregulation are also being developed. Urinary thioredoxin (TXN) is a biomarker that can be used to diagnose tubular redox dysregulation. AKI causes oxidation and urinary excretion of TXN, which depletes TXN from the tubules, resulting in tubular redox dysregulation. Urinary TXN is selectively elevated at the onset of AKI and correlates with the progression of CKD in diabetic nephropathy. Critical Issues: Diagnostic methods should provide information about molecular mechanisms that aid in the selection of appropriate therapies to improve the prognosis of kidney disease. Future Directions: A specific diagnostic method enabling detection of redox dysregulation based on pathological molecular mechanisms is much needed and could provide the first step toward personalized medicine in kidney disease. Urinary TXN is a candidate for a companion diagnostic method to identify responders to redox-modulating therapeutics. Antioxid. Redox Signal. 36, 1051-1065.
Collapse
Affiliation(s)
- Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Junji Yodoi
- Institute for Virus Research, Kyoto University, Kyoto, Japan.,Japan Biostress Research Promotion Alliance (JBPA), Kyoto, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
9
|
Liu Z, Li C, Li Y, Yu L, Qu M. Propofol Reduces Renal Ischemia Reperfusion-mediated Necroptosis by Up-regulation of SIRT1 in Rats. Inflammation 2022; 45:2038-2051. [PMID: 35460396 DOI: 10.1007/s10753-022-01673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Propofol (Pro) is well known to regulate the asleep-awake-asleep technique. Increasing indication recommends that Pro also has promising properties such as anti-oxidant and anti-inflammation belongings in several disease models. It has been described that Pro has beneficial properties against renal ischemia/reperfusion (rI/R)-mediated acute lung injury (ALI). Nevertheless, pathogenesis underlying the beneficial action of Pro on the remote ALI mediated by rI/R remains unwell unstated. In this research, we displayed that Pro administration remarkably inhibits rI/R-mediated pro-inflammatory cytokines production. Increased levels of oxidative stress were mainly decreased by Pro. Pro administration ameliorated apoptosis-related caspase-3 activation. Furthermore, the levels of crucial necroptosis-associated protein were reduced by Pro. Sirtuin 1 (SIRT1) inhibitor attenuated the aforementioned changes of Pro. In conclusion, these results propose that Pro attenuates rI/R-induced inflammation, oxidative stress, apoptosis, and necroptosis by up-regulation of SIRT1 in rats. Our findings disclose an original pathogenesis underlying the beneficial effect of Pro against rI/R-mediated ALI and reinforce the knowledge that Pro might be a hopeful beneficial agent for the rI/R-mediated ALI.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China.
| | - Chunlei Li
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Min Qu
- Department of Anesthesiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| |
Collapse
|
10
|
Association of C5a/C5aR pathway to activate ERK1/2 and p38 MAPK in acute kidney injury – a mouse model. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Acute inflammation is accompanied by complement system activation and inflammatory cell accumulation. Acute kidney injury (AKI) is one of the common clinical symptoms, it is not clear whether complement system-mediated signaling pathway is involved. This study demonstrated that the expressions of complement C5a and C5a receptor (C5aR) protein in a mouse model with glycerol induced AKI were significantly increased, and the expression of inflammatory cytokines, such as IL-1β, IL-6 and TNF-α, were significantly higher than those in the blank control group. While C5aR antagonist (C5aRa) was added, western analyses for C5a and C5aR were reduced, meanwhile, qPCR and ELISA data showed that inflammatory cytokines also decreased significantly. In addition, preliminarily explored, the Mitogen-activated protein kinases (MAPKs) can be activated by the C5a/C5aR pathway in an AKI mouse model which showed that the C5a/C5aR pathway in a mouse model group activated ERK1/2 and p38, and the protein expression decreased when C5aRa was added. In conclusion, these results indicate that the C5a/C5aR pathway promotes renal pathogenesis by activating ERK1/2 and p38 expression and then affects the disease process, which has certain guiding significance for the subsequent clinical trial.
Collapse
|
11
|
Yang J, Ji GE, Park MS, Seong YJ, Go YS, Lee HY, Fang Y, Kim MG, Oh SW, Cho WY, Jo SK. Probiotics partially attenuate the severity of acute kidney injury through an immunomodulatory effect. Kidney Res Clin Pract 2021; 40:620-633. [PMID: 34922432 PMCID: PMC8685362 DOI: 10.23876/j.krcp.20.265] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/06/2021] [Indexed: 01/09/2023] Open
Abstract
Background A healthy microbiome helps maintain the gut barrier and mucosal immune tolerance. Previously, we demonstrated that acute kidney injury (AKI) provoked dysbiosis, gut inflammation, and increased permeability. Here, we investigated the renoprotective effects of the probiotic Bifidobacterium bifidum BGN4 and the underlying mechanisms thereof. Methods C57BL/6 mice were subjected to bilateral renal ischemia-reperfusion injury (IRI) or sham operation. In the probiotic-treated group, BGN4 was administered by gavage once daily, starting 2 weeks before injury. Results Administration of BGN4 significantly increased gut microbiome diversity and prevented expansion of the Enterobacteriaceae and Bacteroidetes that were the hallmarks of AKI-induced dysbiosis. Further, BGN4 administration also significantly reduced other IRI-induced changes in the colon microenvironment, including effects on permeability, apoptosis of colon epithelial cells, and neutrophil and proinflammatory macrophage infiltration. Mononuclear cells co-cultured with BGN4 expressed significantly increased proportions of CD103+/CD11c+ and CD4+ CD25+ Treg cells, suggesting a direct immunomodulatory effect. BGN4 induced Treg expansion in colon, mesenteric lymph nodes (MNL), and kidney. BGN4 also reduced CX3CR1intermediateLy6Chigh monocyte infiltration and interleukin (IL)-17A suppression in the small intestine, which may have attenuated AKI severity, kidney IL-6 messenger RNA expression, and AKI-induced liver injury. Conclusion Prior supplementation with BGN4 significantly attenuated the severity of IRI and secondary liver injury. This renoprotective effect was associated with increased Foxp3 and reduced IL-17A expression in the colon, MNL, and kidney, suggesting that BGN4-induced immunomodulation might contribute to its renoprotective effects. Probiotics may therefore be a promising strategy to reduce AKI severity and/or remote organ injury.
Collapse
Affiliation(s)
- Jihyun Yang
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,Research Center, BIFIDO Co. Ltd., Hongcheon, Republic of Korea
| | - Myeong Soo Park
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,Research Center, BIFIDO Co. Ltd., Hongcheon, Republic of Korea
| | - Yeong-Je Seong
- Research Center, BIFIDO Co. Ltd., Hongcheon, Republic of Korea
| | - Yoon Sook Go
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Lee
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yina Fang
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Myung-Gyu Kim
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Se Won Oh
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Yong Cho
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Kyung Jo
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Thioredoxin-1 and Correlations of the Plasma Cytokines Regarding Aortic Valve Stenosis Severity. Biomedicines 2021; 9:biomedicines9081041. [PMID: 34440245 PMCID: PMC8391645 DOI: 10.3390/biomedicines9081041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aortic valve stenosis (AS) develops not only with a pronounced local inflammatory response, but also oxidative stress is involved. The aim of this study was to evaluate the plasma levels of thioredoxin-1 (TRX1), myeloperoxidase (MPO), chemerin, growth differentiation factor 15 (GDF-15), angiopoietin-2 (Ang-2), vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), fibroblast growth factor 21 (FGF-21), and metalloproteinase (MMP)-1, -3, and -9 in acquired AS patients as well as to clarify the correlations of TXR1 and the plasma inflammatory biomarkers regarding AS severity. AS patients were classified into three groups: 16 patients with mild AS stenosis, 19 with moderate and 11 with severe AS, and 30 subjects without AS were selected as a control group. AS patients had significantly higher plasma levels of TRX1 compared to controls, but the highest difference was found in mild AS patients compared to the controls. We conclude that AS is associated with significantly increased plasma TRX1 levels, and TRX1 might serve as a specific and sensitive biomarker of AS. TRX1 and also chemerin, GDF-15, VEGF-A, FGF-2 and FGF-21 significantly correlate with AS severity degrees. TRX1 also showed positive association with FGF-2, VEGF-A, and MMP-3 in all AS patients.
Collapse
|
13
|
Tang Q, Wang Q, Sun Z, Kang S, Fan Y, Hao Z. Bergenin Monohydrate Attenuates Inflammatory Response via MAPK and NF-κB Pathways Against Klebsiella pneumonia Infection. Front Pharmacol 2021; 12:651664. [PMID: 34017253 PMCID: PMC8129520 DOI: 10.3389/fphar.2021.651664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background:Klebsiella pneumonia has emerged as a critical pathogen causing severe clinical problems, such as pneumonia and sepsis. Meanwhile, intensified drug resistance induced by antibiotic therapy necessitates discovering novel and active molecules from Traditional Chinese Medicine (TCM) for treatment. Methods and results: In this study, the isolated Bergenin monohydrate showed an anti-inflammatory effect in Klebsiella-infected mice. We initially investigated the anti-inflammatory effects and cytoprotection against oxidative stress in vitro and in vivo. Interestingly, a specific dose of Bm can effectively ameliorate lung injury and suppress the expression of inflammatory cytokines such as TNF-α, IL-6, IL-1β and PEG2. Moreover, Bm was also shown to reduced the levels of MPO, MDA and increased SOD and GSH activities. Moreover, we assessed the intracellular signaling molecules including p38, ERK, JNK, IκB, NF-κB-p65 by western blotting and verified through MAPK and NF-κB pathways inhibition experiments. These results reveal that Bm executed its effects via the classical MAPK signaling pathway and NF-κB pathway. Conclusion: Given its underlying anti-inflammatory effect, Bm may be used as a promising therapeutic against Klebsiella-induced infection, thus providing a benefit for the future clinical therapy of pneumonia and medicine design.
Collapse
Affiliation(s)
- Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyu Wang
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuojian Sun
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Songyao Kang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Yimeng Fan
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|