1
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
2
|
Goddu SM, Westphal GT, Sun B, Wu Y, Bloch CD, Bradley JD, Darafsheh A. Synchronized high-speed scintillation imaging of proton beams, generated by a gantry-mounted synchrocyclotron, on a pulse-by-pulse basis. Med Phys 2022; 49:6209-6220. [PMID: 35760763 DOI: 10.1002/mp.15826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance (QA) tools with high spatiotemporal resolution to conveniently measure the spatial and temporal properties of the beam. In this context, scintillation-based dosimeters, if synchronized with the radiation beam and corrected for ionization quenching, are appealing. PURPOSE To develop a synchronized high-speed scintillation imaging system for characterization and verification of the proton therapy beams on a pulse-by-pulse basis. MATERIALS AND METHODS A 30 cm × 30 cm × 5 cm block of BC-408 plastic scintillator placed in a light-tight housing was irradiated by proton beams generated by a Mevion S250TM proton therapy synchrocyclotron. A high-speed camera system, placed perpendicular to the beam direction and facing the scintillator, was synchronized to the accelerator's pulses to capture images. Opening and closing of the camera's shutter was controlled by setting a proper time delay and exposure time, respectively. The scintillation signal was recorded as a set of two-dimensional (2D) images. Empirical correction factors were applied to the images to correct for the non-uniformity of the pixel sensitivity and quenching of the scintillator. Proton range and modulation were obtained from the corrected images. RESULTS The camera system was able to capture all data on a pulse-by-pulse basis at a rate of ∼504 frames per second. The applied empirical correction method for ionization quenching was effective and the corrected composite image provided a 2D map of dose distribution. The measured range (depth of distal 90%) through scintillation imaging agreed within 1.2 mm with that obtained from ionization chamber measurement. CONCLUSION A high-speed camera system capable of capturing scintillation signals from individual proton pulses was developed. The scintillation imaging system is promising for rapid proton beam characterization and verification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- S Murty Goddu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Baozhou Sun
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Yu Wu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Charles D Bloch
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, 98133, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30308, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
3
|
Chiu IH, Takeda S, Kajino M, Shinohara A, Katsuragawa M, Nagasawa S, Tomaru R, Yabu G, Takahashi T, Watanabe S, Takeshita S, Miyake Y, Ninomiya K. Non-destructive 3D imaging method using muonic X-rays and a CdTe double-sided strip detector. Sci Rep 2022; 12:5261. [PMID: 35347165 PMCID: PMC8960870 DOI: 10.1038/s41598-022-09137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Elemental analysis based on muonic X-rays resulting from muon irradiation provides information about bulk material composition without causing damage, which is essential in the case of precious or otherwise unreachable samples, such as in archeology and planetary science. We developed a three-dimensional (3D) elemental analysis technique by combining the elemental analysis method based on negative muons with an imaging cadmium telluride double-sided strip detector (CdTe-DSD) designed for the hard X-ray and soft \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}γ-ray observation. A muon irradiation experiment using spherical plastic samples was conducted at the Japan Proton Accelerator Research Complex (J-PARC); a set of projection images was taken by the CdTe-DSD, equipped with a pinhole collimator, for different sample rotation angles. The projection images measured by the CdTe-DSD were utilized to obtain a 3D volumetric phantom by using the maximum likelihood expectation maximization algorithm. The reconstructed phantom successfully revealed the 3D distribution of carbon in the bulk samples and the stopping depth of the muons. This result demonstrated the feasibility of the proposed non-destructive 3D elemental analysis method for bulk material analysis based on muonic X-rays.
Collapse
Affiliation(s)
- I-Huan Chiu
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Shin'ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
| | - Meito Kajino
- Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Atsushi Shinohara
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Faculty of Health Science, Osaka Aoyama University, 2-11-1 Niina, Minoh, Osaka, 562-8580, Japan
| | - Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
| | - Shunsaku Nagasawa
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan.,Department of Physics, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, 113-0033, Japan
| | - Ryota Tomaru
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan.,Department of Physics, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, 113-0033, Japan
| | - Goro Yabu
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan.,Department of Physics, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, 113-0033, Japan
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan.,Department of Physics, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, 113-0033, Japan
| | - Shin Watanabe
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
| | - Soshi Takeshita
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Yasuhiro Miyake
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazuhiko Ninomiya
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
4
|
Yamamoto S, Yabe T, Hu N, Kanai Y, Tanaka H, Ono K. Optical imaging of lithium-containing zinc sulfate plate in water during irradiation of neutrons from boron neutron capture therapy (BNCT) system. Med Phys 2021; 49:1822-1830. [PMID: 34958515 DOI: 10.1002/mp.15424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Optical imaging of ionizing radiation is a possible method for dose distribution measurements. However, it is not clear whether the imaging method is also applicable to neutrons. To clarify this, we performed the imaging of neutrons in water from boron neutron capture therapy (BNCT) systems. Such systems require efficient distribution measurements of neutrons for quality assessment (QA) of the beams. METHOD A water-filled phantom was irradiated from the side with an epithermal neutron beam, in which a lithium-containing zinc sulfate (Li-ZnS(Ag)) plate was set in the beam direction, and during this irradiation the scintillation of the plate was imaged using a cooled CCD camera. In the imaging, Li-6 in the Li-ZnS(Ag) plate captures neutrons and converts them to alpha particles (He-4) and tritium (H-3), while ZnS(Ag) in the Li-ZnS(Ag) plate produces scintillation light in the plate. We also conducted Monte Carlo simulation and compared its results with the experimental results. RESULTS The image of the emitted light from the Li-ZnS(Ag) plate was clearly obtained with an imaging time of 0.5 s. The depth and lateral profiles of the measured image using the Li-ZnS(Ag) plate showed the same shapes as the neutron distributions measured with gold foil, within a difference of 8%. The destructive effect of neutrons on the CCD camera increased ∼3 times, but the unit was still working after the measurement. CONCLUSION The optical imaging of neutrons in water is possible, and it has the potential to be a new method for efficient QA as well as for research on neutrons. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine
| | - Takuya Yabe
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine.,Department of Radiation Technology, Nagoya University Hospital
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical College
| | - Yasukazu Kanai
- Kansai BNCT Medical Center, Osaka Medical College.,Department of Biofunctional Analysis, Osaka University of Pharmaceutical Science
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical College
| |
Collapse
|