1
|
Ling Z, Cancan H, Xinyi L, Dandan F, Haisan Z, Hongxing Z, Chunming X. Thalamic Volumes and Functional Networks Linked With Self-Regulation Dysfunction in Major Depressive Disorder. CNS Neurosci Ther 2024; 30:e70116. [PMID: 39523461 PMCID: PMC11551040 DOI: 10.1111/cns.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Self-regulation (SR) dysfunction is a crucial risk factor for major depressive disorder (MDD). However, neural substrates of SR linking MDD remain unclear. METHODS Sixty-eight healthy controls and 75 MDD patients were recruited to complete regulatory orientation assessments with the Regulatory Focus Questionnaire (RFQ) and Regulatory Mode Questionnaire (RMQ). Nodal intra and inter-network functional connectivity (FC) was defined as FC sum within networks of 46 thalamic subnuclei (TS) or 88 AAL brain regions, and between the two networks separately. Group-level volumetric and functional difference were compared by two sample t-tests. Pearson's correlation analysis and mediation analysis were utilized to investigate the relationship among imaging parameters and the two behaviors. Canonical correlation analysis (CCA) was conducted to explore the inter-network FC mode of TS related to behavioral subscales. Network-based Statistics with machine learning combining powerful brain imaging features was applied to predict individual behavioral subscales. RESULTS MDD patients showed no group-level volumetric difference in 46 TS but represented significant correlation of TS volume and nodal FC with behavioral subscales. Specially, inter-network FC of the orbital part of the right superior frontal gyrus and the left supplementary motor area mediated the correlation between RFQ/RMQ subscales and depressive severity. Furthermore, CCA identified how the two behaviors are linked via the inter-network FC mode of TS. More crucially, thalamic functional subnetworks could predict RFQ/RMQ subscales and psychomotor retardation for MDD individuals. CONCLUSION These findings provided neurological evidence for SR affecting depressive severity in the MDD patients and proposed potential biomarkers to identify the SR-based risk phenotype of MDD individuals.
Collapse
Affiliation(s)
- Zhang Ling
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - He Cancan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Liu Xinyi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Fan Dandan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
| | - Zhang Haisan
- Department of RadiologyThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
- Xinxiang Key Laboratory of Multimodal Brain ImagingThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
| | - Zhang Hongxing
- Department of PsychiatryThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenanChina
- Psychology School of Xinxiang Medical UniversityXinxiangHenanChina
| | - Xie Chunming
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Jiangsu Key Laboratory of Brain Science and MedicineSoutheast UniversityNanjingJiangsuChina
- Institute of Neuropsychiatry, Affiliated ZhongDa HospitalSoutheast UniversityNanjingJiangsuChina
- The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
2
|
Boyko M, Gruenbaum BF, Oleshko A, Merzlikin I, Zlotnik A. Diet's Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood-Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients 2023; 15:4681. [PMID: 37960334 PMCID: PMC10649677 DOI: 10.3390/nu15214681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) has a profound impact on cognitive and mental functioning, leading to lifelong impairment and significantly diminishing the quality of life for affected individuals. A healthy blood-brain barrier (BBB) plays a crucial role in guarding the brain against elevated levels of blood glutamate, making its permeability a vital aspect of glutamate regulation within the brain. Studies have shown the efficacy of reducing excess glutamate in the brain as a treatment for post-TBI depression, anxiety, and aggression. The purpose of this article is to evaluate the involvement of dietary glutamate in the development of depression after TBI. We performed a literature search to examine the effects of diets abundant in glutamate, which are common in Asian populations, when compared to diets low in glutamate, which are prevalent in Europe and America. We specifically explored these effects in the context of chronic BBB damage after TBI, which may initiate neurodegeneration and subsequently have an impact on depression through the mechanism of chronic glutamate neurotoxicity. A glutamate-rich diet leads to increased blood glutamate levels when contrasted with a glutamate-poor diet. Within the context of chronic BBB disruption, elevated blood glutamate levels translate to heightened brain glutamate concentrations, thereby intensifying neurodegeneration due to glutamate neurotoxicity.
Collapse
Affiliation(s)
- Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Igor Merzlikin
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, Sumy 40002, Ukraine
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
3
|
Looi MC, Idris Z, Kumaran T, Thyagarajan D, Abdullah JM, Ghani ARI, Ismail MI. A Study of 309 Patients and at One Year Follow-Up for Depression after Traumatic Brain Injury. J Neurotrauma 2023; 40:94-101. [PMID: 36017631 DOI: 10.1089/neu.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) is one the major causes of death and morbidity in developing countries, where depression is a common psychiatric condition among individuals with TBI. The objectives were to investigate the occurrence and severity of depression one-year post-TBI; the association between radiological findings and depression; and the risk factors. We report a cross-sectional study among adult patients who were hospitalized because of TBI in the past one year. A structured data collection form was used to collect patients' demographic data during TBI, while the Patient Health Questionnaire (PHQ)-9 questionnaire was administered to assess the level of depression at one-year post-TBI. Of the 309 patients in this study; 46.6%, 26.2%, and 27.2% had mild, moderate, and severe TBI, respectively. The overall rate of depression was 33.7%, where 22.3%, 8.7%, and 2.6% had mild, moderate, and moderately severe depression, respectively. There was a significant, positive correlation between severity of TBI and level of depression; rs (0.427), p < 0.0001. The risk factors for depression at one-year post-TBI are moderate-severe TBI (odds ratio [OR]: 3.75, 95% confidence interval [CI] 2.03-6.90, p < 0.00), being unmarried (OR: 2.67, 95% CI 1.51-4.72, p = 0.001), female gender (OR: 2.62, 95% CI 1.25-5.46, p = 0.011), alcohol consumption (OR: 2.38, 95% CI 1.12-5.06, p = 0.024) and frontal lobe injury (OR: 1.96, 95% CI 1.05-3.68, p = 0.035). Increasing severity of TBI is associated with worsening levels of depression. Patients with frontal lobe injury have the highest risk of depression, while diffuse injury is associated with occurrence of moderate and moderately severe depression.
Collapse
Affiliation(s)
- Mun Choon Looi
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia.,Department of Neurosurgery, Hospital Kuala Lumpur, Ministry of Health, Kuala Lumpur, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Thinesh Kumaran
- Department of Neurosurgery, Hospital Kuala Lumpur, Ministry of Health, Kuala Lumpur, Malaysia
| | | | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Muhammad Ihfaz Ismail
- Department of Neurosciences, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
4
|
Mayer AR, Quinn DK. Neuroimaging Biomarkers of New-Onset Psychiatric Disorders Following Traumatic Brain Injury. Biol Psychiatry 2022; 91:459-469. [PMID: 34334188 PMCID: PMC8665933 DOI: 10.1016/j.biopsych.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has traditionally been associated with cognitive and behavioral changes during both the acute and chronic phases of injury. Because of its noninvasive nature, neuroimaging has the potential to provide unique information on underlying macroscopic and microscopic biological mechanisms that may serve as causative agents for these neuropsychiatric sequelae. This broad scoping review identifies at least 4 common macroscopic pathways that exist between TBI and new-onset psychiatric disorders, as well as several examples of how neuroimaging is currently being utilized in clinical research. The review then critically examines the strengths and limitations of neuroimaging for elucidating TBI-related microscopic pathology, such as microstructural changes, neuroinflammation, proteinopathies, blood-brain barrier damage, and disruptions in cellular signaling. A summary is then provided for how neuroimaging is currently being used to investigate TBI-related pathology in new-onset neurocognitive disorders, depression, and posttraumatic stress disorder. Identified gaps in the literature include a lack of prospective studies to definitively associate imaging findings with the development of new-onset psychiatric disorders, as well as antemortem imaging studies subsequently confirmed with postmortem correlates in the same study cohort. Although the spatial resolution and specificity of imaging biomarkers has greatly improved over the last 2 decades, we conclude that neuroimaging biomarkers do not yet exist for the definitive in vivo diagnosis of cellular pathology. This represents a necessary next step for further elucidating causal relationships between TBI and new-onset psychiatric disorders.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychology, University of New Mexico, Albuquerque, NM 87131,Corresponding author: Andrew Mayer, Ph.D., The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106 USA; Tel: 505-272-0769; Fax: 505-272-8002;
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
5
|
Medeiros GC, Twose C, Weller A, Dougherty JW, Goes FS, Sair HI, Smith GS, Roy D. Neuroimaging correlates of depression after traumatic brain injury: A systematic review. J Neurotrauma 2022; 39:755-772. [PMID: 35229629 DOI: 10.1089/neu.2021.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Depression is the most frequent neuropsychiatric complication after traumatic brain injury (TBI) and is associated with poorer outcomes. Neuroimaging has the potential to improve our understanding of the neural correlates of depression after TBI and may improve our capacity to accurately predict and effectively treat this condition. We conducted a systematic review of structural and functional neuroimaging studies that examined the association between depression after TBI, and neuroimaging measures. Electronic searches were conducted in four databases and were complemented by manual searches. In total, 2,035 citations were identified and, ultimately, 38 articles were included totaling 1,793 individuals (median [25%-75%] sample size of 38.5 (21.8-54.3) individuals). The most frequently used modality was structural magnetic resonance imaging (MRI) (n=17, 45%), followed by diffusion tensor imaging (n=11, 29%), resting-state functional MRI (n=10, 26%), task-based functional MRI (n=4, 8%), and positron emission tomography (n=2, 4%). Most studies (n=27, 71%) were cross-sectional. Overall, depression after TBI was associated with lower grey matter measures (volume, thickness, and/or density) and greater white matter damage. However, identification of specific brain areas was somewhat inconsistent. Findings that were replicated in more than one study included reduced grey matter in the rostral anterior cingulate cortex, prefrontal cortex and hippocampus, and damage in five white matter tracts (cingulum, internal capsule, superior longitudinal fasciculi, anterior, and posterior corona radiata). This systematic review found that the available data did not converge on a clear neuroimaging biomarker for depression after TBI. However, there are promising targets that warrant further study.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexandra Weller
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W Dougherty
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haris I Sair
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Durga Roy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Choi EB, Jang SH. Degeneration of core neural tracts for emotional regulation in a patient with traumatic brain injury: A case report. Medicine (Baltimore) 2021; 100:e24319. [PMID: 33530222 PMCID: PMC7850638 DOI: 10.1097/md.0000000000024319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Several brain structures, including the orbital prefrontal cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, amygdala, and anterior cingulate cortex, are considered key structures in the neural circuitry underlying emotion regulation. We report on a patient showing behavior changes and degeneration of core neural tracts for emotional regulation following traumatic brain injury (TBI). PATIENT CONCERNS A 51-year-old male patient suffered an in-car accident. The patient lost consciousness for approximately 30 days, and his Glasgow Coma Scale score was 3. He underwent stereotactic drainage for traumatic intraventricular and intracerebral hemorrhages. At approximately 6.5-year after onset, he began to show disinhibition behaviors such as shouting with anger, which worsened over time. At approximately 8-year after onset, he showed severe depression signs and disinhibition, including violence. DIAGNOSES The patient who showed delayed-onset behavioral changes (disinhibition and depression). INTERVENTIONS Diffusion tensor imaging data were acquired at 3 months and 8 years after TBI onset. OUTCOMES The patient showed degeneration of core neural tracts for emotional regulation that was associated with delayed behavioral changes following TBI. On both 3-month and 8-year diffusion tensor tractographies (DTTs), the right dorsolateral prefronto-thalamic tract, ventrolateral prefronto-thalamic tract, orbital prefronto-thalamic tract, uncinate fasciculus, and both cinguli were reconstructed whereas other neural tracts were not reconstructed. Compared with the 3-month DTT, all reconstructed neural tracts on the 8-year DTT were narrow, except for the left cingulum, which showed new transcallosal fibers between both anterior cingula. The fractional anisotropy and tract volume of all reconstructed neural tracts were lower on the 8-year DTT than the 3-month DTT, except for the tract volume of left cingulum. LESSONS The evaluation of dorsolateral, ventrolateral, and orbital prefronto-thalamic tract, uncinate fasciculus, and cingulum using follow-up DTTs is useful when a patient with TBI shows delayed-onset behavioral problems.
Collapse
|