1
|
Kido J, Haruno K, Sugawara K, Anan K, Hattori Y, Noda Y, Sawada T, Nakamura K. Newborn screening for spinal muscular atrophy: The potential of digital polymerase chain reaction technique. Mol Genet Metab 2025; 145:109114. [PMID: 40267637 DOI: 10.1016/j.ymgme.2025.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Spinal muscular atrophy (SMA) is a degenerative neuromuscular disorder caused by a homozygous SMN1 loss-of-function variant. Early detection of SMA at the pre-symptomatic stage is essential for effective therapy. Consequently, Japan initiated newborn screening (NBS) for SMA in 2021 in the Kumamoto Prefecture, following global recommendations and implementations. The current NBS protocol involves a two-step process: first, quantitative real-time polymerase chain reaction (qPCR) for SMN1, followed by SMN1 and SMN2 copy number analysis using multiplex ligation-dependent probe amplification (MLPA). However, this approach is time-intensive, and qPCR alone cannot distinguish a single copy of SMN1 exon 7. The current NBS protocol is designed to detect approximately 96 % of SMA cases, specifically those with homozygous SMN1 exon 7 deletions. This study developed a digital PCR system for simultaneous analysis of SMN1 and SMN2 copy numbers to reduce the diagnostic time and improve diagnostic accuracy. Digital PCR was tested on dried blood spot (DBS) samples from 6 SMA patients (P-1 - P-6) and 386 healthy newborns. Additionally, the SMN1 and SMN2 copy numbers of the 6 patients were evaluated using MLPA. The results demonstrate that digital PCR enables simultaneous analysis of SMN1 and SMN2 copy numbers, with the outcomes for all six patients matching those obtained through MLPA. Moreover, digital PCR was more cost-effective than qPCR. Thus, digital PCR offers a practical and efficient alternative for SMA screening in NBS, enabling simultaneous analysis of SMN1 and SMN2 copy numbers while also improving the diagnostic speed and accuracy.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan.
| | - Ken Haruno
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kotaro Anan
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Yusuke Hattori
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Noda
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
2
|
Rangel V, Sterrenberg JN, Garawi A, Mezcord V, Folkerts ML, Calderon SE, Garcia YE, Wang J, Soyfer EM, Eng OS, Valerin JB, Tanjasiri SP, Quintero-Rivera F, Seldin MM, Masri S, Frock RL, Fleischman AG, Pannunzio NR. Increased AID results in mutations at the CRLF2 locus implicated in Latin American ALL health disparities. Nat Commun 2024; 15:6331. [PMID: 39068148 PMCID: PMC11283463 DOI: 10.1038/s41467-024-50537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Activation-induced cytidine deaminase (AID) is a B cell-specific mutator required for antibody diversification. However, it is also implicated in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain blood cancers is critical in assessing disease severity and treatment options. We have developed a digital PCR (dPCR) assay that allows us to quantify mutations resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this assay shows that increased AID levels in immature B cells increase genome instability at loci linked to chromosomal translocation formation. This includes the CRLF2 locus that is often involved in translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Hispanics, particularly those with Latin American ancestry. Using dPCR, we characterize the CRLF2 locus in B cell-derived genomic DNA from both Hispanic ALL patients and healthy Hispanic donors and found increased mutations in both, suggesting that vulnerability to DNA damage at CRLF2 may be driving this health disparity. Our ability to detect and quantify these mutations will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.
Collapse
Affiliation(s)
- Valeria Rangel
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jason N Sterrenberg
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Aya Garawi
- School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Melissa L Folkerts
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Sabrina E Calderon
- School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Yadhira E Garcia
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eli M Soyfer
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Oliver S Eng
- Division of Surgical Oncology, Department of Surgery, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Jennifer B Valerin
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Sora Park Tanjasiri
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
- Department of Health, Society and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Richard L Frock
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Nicholas R Pannunzio
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Jiang Y, Luo Z, Wang W, Lu X, Xia Z, Xie J, Lu M, Wu L, Zhou Y, Guo Q. Development of a low-cost and accurate carrier screening method for spinal muscular atrophy in developing countries. Eur J Med Genet 2024; 68:104921. [PMID: 38325644 DOI: 10.1016/j.ejmg.2024.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/29/2023] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Heterozygous carriers of the survival of motor neuron 1 (SMN1) gene deletion in parents account for approximately 95% of neonatal spinal muscular atrophy cases. Given the severity of the disease, professional organizations have recommended periconceptional spinal muscular atrophy carrier screening to all couples, regardless of race or ethnicity. However, the prevalence of screening activities in mainland China remains suboptimal, mainly attributed to the limitations of the existing carrier screening methods. Herein, we aimed to develop a low-cost, accessible, and accurate carrier screening method based on duplex droplet digital PCR (ddPCR), to cover a wider population in developing countries, including China. The receiver operating characteristic curve was used to determine the cut-off value of SMN1 copy numbers. Performance validation was conducted for linearity, precision, and accuracy. In total, 482 cases were considered to validate the concordance between the developed ddPCR assay and multiplex ligation-dependent probe amplification. Linear correlations were excellent between the expected concentration of the reference gene and the observed values (R2 > 0.99). Both the intra- and inter-assay precision of our ddPCR assays were less than 6.0%. The multiplex ligation-dependent probe amplification and ddPCR results were consistent in 480 of the 482 cases (99.6%). Two cases with multiplex ligation-dependent probe amplification, suggestive of two copies of SMN1 exon 7, were classified into three copies by ddPCR analysis. The overall correct classification of the samples included in our ddPCR assay was 100%. This study demonstrates that an appropriate cut-off value is an important prerequisite for establishing a semi-quantitative method to determine the SMN1 copy numbers. Compared to conventional methods, our ddPCR assay is low-cost, highly accurate, and has full potential for application in population spinal muscular atrophy carriers screening.
Collapse
Affiliation(s)
- Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, 361003, PR China; Biobank, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China.
| | - Zhenyu Luo
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Wenrong Wang
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Xingxiu Lu
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - ZhongMin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Jieqiong Xie
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Mei Lu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Lili Wu
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, 361003, PR China; Biobank, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, 361003, PR China.
| |
Collapse
|
4
|
Jiang Y, Xia Z, Zhou Y, Lu X, Du X, Guo Q. Comparison of the accuracy of multiplex digital PCR versus multiplex ligation-dependent probe amplification in quantification of the survival of motor neuron genes copy numbers. Clin Chim Acta 2024; 553:117708. [PMID: 38097128 DOI: 10.1016/j.cca.2023.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
For over two decades, multiplex ligation-dependent probe amplification (MLPA) has served as the gold standard for genetic testing of spinal muscular atrophy. However, there is emerging evidence questioning the reliability of MLPA in determining the copy numbers (CNs) of the survival of motor neuron (SMN) gene in certain cases. Recently, digital polymerase chain reaction (dPCR) has shown potential for better performance in copy number variant detection. This study aimed to compare MLPA and dPCR in quantifying SMN1 and SMN2 CNs, identify reasons for observed discrepancies, and explore the clinical implications of false results. A total of 733 DNA samples, previously subjected to MLPA analysis, were tested using multiplex droplet dPCR assays. Samples exhibiting inconsistent results between the two methods underwent repeated dPCR assays. When inconsistencies persisted, a third method was employed for verification. Digital PCR yielded results consistent with those of MLPA in 94.4% (692/733) of samples. Forty-one cases exhibited quantitative disparities in SMN1 and/or SMN2 CNs between the two methods. Confirmatory tests revealed that 37 inaccurate results were produced by the MLPA analysis, whereas four were attributed to the dPCR method. The dPCR technique exhibits better accuracy than MLPA and is qualified for SMA genetic testing across various clinical scenarios.
Collapse
Affiliation(s)
- Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, PR China; Biobank, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China.
| | - Zhongmin Xia
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, PR China; Biobank, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Xingxiu Lu
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Xiaohan Du
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, PR China.
| |
Collapse
|
5
|
Zhou Y, Jiang Y. Current Advances in Genetic Testing for Spinal Muscular Atrophy. Curr Genomics 2023; 24:273-286. [PMID: 38235355 PMCID: PMC10790334 DOI: 10.2174/0113892029273388231023072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common genetic disorders worldwide, and genetic testing plays a key role in its diagnosis and prevention. The last decade has seen a continuous flow of new methods for SMA genetic testing that, along with traditional approaches, have affected clinical practice patterns to some degree. Targeting different application scenarios and selecting the appropriate technique for genetic testing have become priorities for optimizing the clinical pathway for SMA. In this review, we summarize the latest technological innovations in genetic testing for SMA, including MassArray®, digital PCR (dPCR), next-generation sequencing (NGS), and third-generation sequencing (TGS). Implementation recommendations for rationally choosing different technical strategies in the tertiary prevention of SMA are also explored.
Collapse
Affiliation(s)
- Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
6
|
Edwards RL, Takach JE, McAndrew MJ, Menteer J, Lestz RM, Whitman D, Baxter-Lowe LA. Next generation multiplexing for digital PCR using a novel melt-based hairpin probe design. Front Genet 2023; 14:1272964. [PMID: 38028620 PMCID: PMC10667681 DOI: 10.3389/fgene.2023.1272964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Digital PCR (dPCR) is a powerful tool for research and diagnostic applications that require absolute quantification of target molecules or detection of rare events, but the number of nucleic acid targets that can be distinguished within an assay has limited its usefulness. For most dPCR systems, one target is detected per optical channel and the total number of targets is limited by the number of optical channels on the platform. Higher-order multiplexing has the potential to dramatically increase the usefulness of dPCR, especially in scenarios with limited sample. Other potential benefits of multiplexing include lower cost, additional information generated by more probes, and higher throughput. To address this unmet need, we developed a novel melt-based hairpin probe design to provide a robust option for multiplexing digital PCR. A prototype multiplex digital PCR (mdPCR) assay using three melt-based hairpin probes per optical channel in a 16-well microfluidic digital PCR platform accurately distinguished and quantified 12 nucleic acid targets per well. For samples with 10,000 human genome equivalents, the probe-specific ranges for limit of blank were 0.00%-0.13%, and those for analytical limit of detection were 0.00%-0.20%. Inter-laboratory reproducibility was excellent (r 2 = 0.997). Importantly, this novel melt-based hairpin probe design has potential to achieve multiplexing beyond the 12 targets/well of this prototype assay. This easy-to-use mdPCR technology with excellent performance characteristics has the potential to revolutionize the use of digital PCR in research and diagnostic settings.
Collapse
Affiliation(s)
- Rebecca L. Edwards
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | | | | | - Jondavid Menteer
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Rachel M. Lestz
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Nephrology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Douglas Whitman
- Luminex Corporation, A Diasorin Company, Austin, TX, United States
| | - Lee Ann Baxter-Lowe
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Tuncel G, Sanlıdag B, Dirik E, Baris T, Ergoren MC, Temel SG. Lessons from Real Life Experience: Importance of In-House Sequencing and Smart Ratio-Based Real-Time PCR Outperform Multiplex Ligation-Dependent Probe Amplification in Prenatal Diagnosis for Spinal Muscular Atrophy: Bench to Bedside Diagnosis. Glob Med Genet 2023; 10:240-246. [PMID: 37663644 PMCID: PMC10471427 DOI: 10.1055/s-0043-1774307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, recessively inherited neurodegenerative disorder caused by the presence of pathogenic variants in the SMN gene. As it is the leading inherited cause of infant mortality, identification of SMN gene pathogenic variant carriers is important for diagnostic purposes with effective genetic counseling. Multiple ligation probe analysis (MLPA), a probe-based method, is considered as the gold standard for SMA carrier analysis. However, MLPA might give false-negative results in cases with variations in the probe-binding regions. Here, we present a case born to consanguineous SMA carrier parents. Prenatal diagnosis with MLPA failed to detect the compound heterozygous mutant state of the proband and she was born unfortunately with SMA phenotype. Further analysis with a real-time polymerase chain reaction kit was able to detect the compound heterozygous state of the patient and was confirmed with targeted next-generation sequencing technology.
Collapse
Affiliation(s)
- Gulten Tuncel
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | - Burcin Sanlıdag
- Department of Paediatrics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Eray Dirik
- Department of Paediatrics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Tugba Baris
- Gelişim Tıp Laboratuvarları, Istanbul, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Sehime Gulsun Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
- Department of Translational Medicine, Institute of Health Science, Bursa Uludag University, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
8
|
Liu DD, Muliaditan D, Viswanathan R, Cui X, Cheow LF. Melt-Encoded-Tags for Expanded Optical Readout in Digital PCR (METEOR-dPCR) Enables Highly Multiplexed Quantitative Gene Panel Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301630. [PMID: 37485651 PMCID: PMC10520687 DOI: 10.1002/advs.202301630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Digital PCR (dPCR) is an important tool for precise nucleic acid quantification in clinical setting, but the limited multiplexing capability restricts its applications for quantitative gene panel profiling. Here, this work describes melt-encoded-tags for expanded optical readout in digital PCR (METEOR-dPCR), a simple two-step assay that enables simultaneous quantification of a large panel of arbitrary genes in a dPCR platform. Target genes are quantitatively converted into DNA tags with unique melting temperatures through a ligation approach. These tags are then counted and distinguished by their melt-curve profiles on a dPCR platform. A multiplexing capacity of M^N, where M is the number of resolvable melting temperature and N is the number of fluorescence channel, can be achieved. This work validates METEOR-dPCR with simultaneous DNA copy number profiling of 60 targets using dPCR in cancer cells, and demonstrates its sensitivity for estimating tumor fraction in mixed tumor and normal DNA samples. The rapid, quantitative, and highly multiplexed METEOR-dPCR assay will have wide appeal for many clinical applications.
Collapse
Affiliation(s)
- Dong Dong Liu
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Daniel Muliaditan
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Genome institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
| | - Ramya Viswanathan
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Xu Cui
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Lih Feng Cheow
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| |
Collapse
|
9
|
Holland SC, Holland LA, Smith MF, Lee MB, Hu JC, Lim ES. Digital PCR Discriminates between SARS-CoV-2 Omicron Variants and Immune Escape Mutations. Microbiol Spectr 2023; 11:e0525822. [PMID: 37306573 PMCID: PMC10434287 DOI: 10.1128/spectrum.05258-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mihyun B. Lee
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Shum BOV, Henner I, Cairns A, Pretorius C, Wilgen U, Barahona P, Ungerer JPJ, Bennett G. Technical feasibility of newborn screening for spinal muscular atrophy by next-generation DNA sequencing. Front Genet 2023; 14:1095600. [PMID: 36713073 PMCID: PMC9878289 DOI: 10.3389/fgene.2023.1095600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Newborn screening (NBS) assays for spinal muscular atrophy (SMA) typically use a polymerase chain reaction (PCR) based assay to identify individuals with homozygous deletion in exon 7 of the SMN1 gene. Due to high DNA sequence homology between SMN1 and SMN2, it has previously been difficult to accurately bioinformatically map short reads from next-generation DNA sequencing (NGS) to SMN1, resulting in low analytical performance and preventing NGS being used for SMA screening. Advances in bioinformatics have allowed NGS to be used in diagnostic settings, but to date these assays have not reached the scale required for high volume population newborn screening and have not been performed on the dried blood spot samples that NBS programs currently use. Here we integrate an NGS assay using hybridisation-based capture with a customised bioinformatics algorithm and purpose designed high throughput reporting software into an existing NBS program to achieve a laboratory workflow for population SMA screening. We tested the NGS assay on over 2500 newborns born over 2 weeks in a NBS program in a technical feasibility study and show high sensitivity and specificity. Our results suggest NGS may be an alternate method for SMA screening by NBS programs, providing a multiplex testing platform on which potentially hundreds of inherited conditions could be simultaneously tested.
Collapse
Affiliation(s)
- Bennett O. V. Shum
- Preventive Health Division, Genepath, Sydney, NSW, Australia,EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of NSW, Sydney, NSW, Australia
| | - Ilya Henner
- Preventive Health Division, Genepath, Sydney, NSW, Australia
| | - Anita Cairns
- Neurosciences Department, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Carel Pretorius
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, QLD, Australia
| | - Urs Wilgen
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, QLD, Australia
| | | | - Jacobus P. J. Ungerer
- Department of Chemical Pathology, Pathology Queensland, Queensland Health, Brisbane, QLD, Australia,Faculty of Health and Behavioural Sciences, University of QLD, Brisbane, QLD, Australia,*Correspondence: Jacobus P. J. Ungerer, ; Glenn Bennett,
| | - Glenn Bennett
- Preventive Health Division, Genepath, Sydney, NSW, Australia,*Correspondence: Jacobus P. J. Ungerer, ; Glenn Bennett,
| |
Collapse
|
11
|
Sawada T, Kido J, Sugawara K, Yoshida S, Ozasa S, Nomura K, Okada K, Fujiyama N, Nakamura K. Newborn screening for spinal muscular atrophy in Japan: One year of experience. Mol Genet Metab Rep 2022; 32:100908. [PMID: 35942129 PMCID: PMC9356196 DOI: 10.1016/j.ymgmr.2022.100908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/09/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a degenerative neuromuscular disease that causes progressive muscle weakness and atrophy due to loss of the anterior horn cells of the spinal cord. Although effective treatments, such as gene therapy, have emerged in recent years, their therapeutic efficacy depends on a restricted time window of treatment initiation. For the treatment to be effective, it must be started before symptoms of the disease emerge. For this purpose, newborn screening (NBS) for SMA is conducted in many countries worldwide. The NBS program for SMA has been initiated in Japan in several regions, including the Kumamoto Prefecture. We started the NBS program in February 2021 and detected a patient with SMA after screening 13,587 newborns in the first year. Herein, we report our experience with the NBS program for SMA and discuss an issue to be approached in the future.
Collapse
Affiliation(s)
- Takaaki Sawada
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Shiro Ozasa
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Keiko Nomura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Kentaro Okada
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Natsumi Fujiyama
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Chun SK, Fortin BM, Fellows RC, Habowski AN, Verlande A, Song WA, Mahieu AL, Lefebvre AEYT, Sterrenberg JN, Velez LM, Digman MA, Edwards RA, Pannunzio NR, Seldin MM, Waterman ML, Masri S. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer. SCIENCE ADVANCES 2022; 8:eabo2389. [PMID: 35947664 PMCID: PMC9365282 DOI: 10.1126/sciadv.abo2389] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 05/12/2023]
Abstract
An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate Apc-driven CRC pathogenesis in vivo. Using an intestinal organoid model, we demonstrate that clock disruption promotes transformation by driving Apc loss of heterozygosity, which hyperactivates Wnt signaling. This up-regulates c-Myc, a known Wnt target, which drives heightened glycolytic metabolism. Using patient-derived organoids, we show that circadian rhythms are lost in human tumors. Last, we identify that variance between core clock and Wnt pathway genes significantly predicts the survival of patients with CRC. Overall, our findings demonstrate a previously unidentified mechanistic link between clock disruption and CRC, which has important implications for young onset cancer prevention.
Collapse
Affiliation(s)
- Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Amber N. Habowski
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | - Leandro M. Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A. Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
14
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
Tan C, Yan Y, Guo N, Wang F, Wang S, Zhu L, Wang Y, Ma Y, Guo Y. Single-Tube Multiplex Digital Polymerase Chain Reaction Assay for Molecular Diagnosis and Prediction of Severity of Spinal Muscular Atrophy. Anal Chem 2022; 94:3517-3525. [PMID: 35137581 DOI: 10.1021/acs.analchem.1c04403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by the degeneration of motor neurons and progressive muscle atrophy. Accurate detection of SMN1 and SMN2 copy numbers is essential for SMA diagnosis, carrier screening, disease severity prediction, therapy, and prognosis. However, a method for SMN1 and SMN2 copy number determination that is simultaneously accurate, simple, rapid, multitargeted, and applicable to various samples has not previously been reported. Here, we developed a single-tube multiplex digital polymerase chain reaction (dPCR) assay for simultaneous determination of the copy numbers of SMN1 exons 7 and 8 and SMN2 exons 7 and 8. A total of 317 clinical samples, including peripheral blood, amniotic fluid, chorionic villus, buccal swabs, and dried blood spots, were collected to evaluate the performance of this dPCR-based assay. The test results were accurate for all the clinical samples. Our assay is accurate, rapid, easy to handle, and applicable to many types of samples and uses a small amount of DNA; it is a powerful tool for SMA molecular diagnosis, large-scale screening, and disease severity assessment.
Collapse
Affiliation(s)
- Chianru Tan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yousheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Na Guo
- TargetingOne Corporation, Beijing 100190, China
| | - Fang Wang
- TargetingOne Corporation, Beijing 100190, China
| | - Songtao Wang
- Department of Central Laboratory, Peking University First Hospital, Beijing 100034, China
| | | | - Yipeng Wang
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing 100034, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Next generation sequencing is a highly reliable method to analyze exon 7 deletion of survival motor neuron 1 (SMN1) gene. Sci Rep 2022; 12:223. [PMID: 34997153 PMCID: PMC8741787 DOI: 10.1038/s41598-021-04325-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common and severe genetic diseases. SMA carrier screening is an effective way to identify couples at risk of having affected children. Next-generation sequencing (NGS)-based expanded carrier screening could detect SMN1 gene copy number without extra experiment and with high cost performance. However, its performance has not been fully evaluated. Here we conducted a systematic comparative study to evaluate the performance of three common methods. 478 samples were analyzed with multiplex ligation probe amplification (MLPA), real-time quantitative polymerase chain reaction (qPCR) and NGS, simultaneously. Taking MLPA-based results as the reference, for 0 copy, 1 copy and ≥ 2 copy SMN1 analysis with NGS, the sensitivity, specificity and precision were all 100%. Using qPCR method, the sensitivity was 100%, 97.52% and 94.30%, respectively; 98.63%, 95.48% and 100% for specificity; and 72.72%, 88.72% and 100% for precision. NGS repeatability was higher than that of qPCR. Moreover, among three methods, NGS had the lowest retest rate. Thus, NGS is a relatively more reliable method for SMN1 gene copy number detection. In expanded carrier screening, compared with the combination of multiple methods, NGS method could reduce the test cost and simplify the screening process.
Collapse
|
17
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021; 22:53-64. [PMID: 33415588 DOI: 10.1007/s10048-020-00630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.
Collapse
|