1
|
Standish CD, Milton JA, Brown RM, Foster GL. Matrix independent and interference free in situ boron isotope analysis by laser ablation MC-ICP-MS/MS. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2025; 40:1309-1322. [PMID: 40225908 PMCID: PMC11987066 DOI: 10.1039/d5ja00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
The accuracy of boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), particularly when the mass bias correction utilises non-matrix-matched reference materials, is compromised by matrix- and mass-load induced biases and an interference from scattered Ca and Ar ions which can induce bias in excess of 20‰. Here we explore the first application to in situ boron isotope analysis of the Thermo Scientific Neoma MS/MS mass spectrometer, which combines a traditional MC-ICP mass spectrometer with a collision/reaction cell and pre-cell mass filtering technology. While operating in full transmission mode, i.e. without using the collision/reaction cell, the pre-cell mass filter successfully eradicates the interference from scattered ions seen on some pre-existing models of MC-ICP-MS and exhibits good analytical sensitivity (∼6-14 mV per μg per g of total boron is typically achieved here). Furthermore, when matching laser operating parameters for samples/secondary reference materials and bracketing reference materials, and limiting the mass of ablated material introduced to the plasma, matrix- and mass-load induced biases can be prevented without the need for instrument tune conditions that severely limit sensitivity. Mean values of 14 reference materials, varying in bulk chemical composition (carbonates and silicates) and boron concentration (c. 2-150 μg g-1), are within uncertainty of reference values when instrumental mass bias is normalised using bracketing analyses of NIST SRM612 glass, demonstrating the accuracy and utility of this approach. Internal precision and external reproducibility are primarily controlled by boron signal intensity and both are typically better than 1‰ when the 11B intensity is at least ∼40 mV. LA-MC-ICP-MS/MS therefore offers a new and exciting opportunity for accurate and precise matrix independent, in situ, boron isotope analysis of geological materials.
Collapse
Affiliation(s)
- Christopher D Standish
- School of Ocean & Earth Sciences, University of Southampton, National Oceanography Centre European Way Southampton SO14 3ZH UK
| | - J Andy Milton
- School of Ocean & Earth Sciences, University of Southampton, National Oceanography Centre European Way Southampton SO14 3ZH UK
| | - Rachel M Brown
- School of Ocean & Earth Sciences, University of Southampton, National Oceanography Centre European Way Southampton SO14 3ZH UK
- Aix Marseille Université, CNRS, IRD, INRAE, Coll France, CEREGE Aix-en-Provence France
| | - Gavin L Foster
- School of Ocean & Earth Sciences, University of Southampton, National Oceanography Centre European Way Southampton SO14 3ZH UK
| |
Collapse
|
3
|
Hughes HP, Thompson D, Foster GL, Lees J, Surge D, Standish CD. Synthetic and practical reconstructions of SST and seawater pH using the novel multiproxy SMITE method. PLoS One 2024; 19:e0305607. [PMID: 38917168 PMCID: PMC11198822 DOI: 10.1371/journal.pone.0305607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Geochemical proxies of sea surface temperature (SST) and seawater pH (pHsw) in scleractinian coral skeletons are valuable tools for reconstructing tropical climate variability. However, most coral skeletal SST and pHsw proxies are univariate methods that are limited in their capacity to circumvent non-climate-related variability. Here we present a novel multivariate method for reconstructing SST and pHsw from the geochemistry of coral skeletons. Our Scleractinian Multivariate Isotope and Trace Element (SMITE) method optimizes reconstruction skill by leveraging the covariance across an array of coral elemental and isotopic data with SST and pHsw. First, using a synthetic proxy experiment, we find that SMITE SST reconstruction statistics (correlation, accuracy, and precision) are insensitive to noise and variable calibration period lengths relative to Sr/Ca. While SMITE pHsw reconstruction statistics remain relative to δ11B throughout the same synthetic experiment, the magnitude of the long-term trend in pHsw is progressively lost under conditions of moderate-to-high analytical uncertainty. Next, we apply the SMITE method to an array of seven coral-based geochemical variables (B/Ca, δ11B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg) measured from two Bermudan Porites astreoides corals. Despite a <3.5 year calibration period, SMITE SST and pHsw estimates exhibit significantly better accuracy, precision, and correlation with their respective climate targets than the best single- and dual-proxy estimators. Furthermore, SMITE model parameters are highly reproducible between the two coral cores, indicating great potential for fossil applications (when preservation is high). The results shown here indicate that the SMITE method can outperform the most common coral-based SST and pHsw reconstructions methods to date, particularly in datasets with a large variety of geochemical variables. We therefore provide a list of recommendations and procedures for users to begin implementing the SMITE method as well as an open-source software package to facilitate dissemination of the SMITE method.
Collapse
Affiliation(s)
- Hunter P. Hughes
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Diane Thompson
- Department of Geosciences, University of Arizona, Tucson, AZ, United States of America
| | - Gavin L. Foster
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom
| | - Jonathan Lees
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Donna Surge
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher D. Standish
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom
| |
Collapse
|
4
|
Standish CD, Trend J, Kleboe J, Chalk TB, Mahajan S, Milton JA, Page TM, Robinson LF, Stewart JA, Foster GL. Correlative geochemical imaging of Desmophyllum dianthus reveals biomineralisation strategy as a key coral vital effect. Sci Rep 2024; 14:11121. [PMID: 38750108 PMCID: PMC11096413 DOI: 10.1038/s41598-024-61772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
The chemical and isotopic composition of stony coral skeletons form an important archive of past climate. However, these reconstructions are largely based on empirical relationships often complicated by "vital effects" arising from uncertain physiological processes of the coral holobiont. The skeletons of deep-sea corals, such as Desmophyllum dianthus, are characterised by micron-scale or larger geochemical heterogeneity associated with: (1) centres of calcification (COCs) where nucleation of new skeleton begins, and (2) fibres that thicken the skeleton. These features are difficult to sample cleanly using traditional techniques, resulting in uncertainty surrounding both the causes of geochemical differences and their influence on environmental signals. Here we combine optical, and in-situ chemical and isotopic, imaging tools across a range of spatial resolutions (~ 100 nm to 10 s of μm) in a correlative multimodal imaging (CMI) approach to isolate the microstructural geochemistry of each component. This reveals COCs are characterised by higher organic content, Mg, Li and Sr and lower U, B and δ11B compared to fibres, reflecting the contrasting biomineralisation mechanisms employed to construct each feature. CMI is rarely applied in Environmental/Earth Sciences, but here we illustrate the power of this approach to unpick the "vital effects" in D. dianthus, and by extension, other scleractinian corals.
Collapse
Affiliation(s)
- Christopher D Standish
- School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK.
| | - Jacob Trend
- School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Jacob Kleboe
- Department of Chemistry and Institute for Life Sciences, University of Southampton, Highfield Campus, University Road, Southampton, SO17 1BJ, UK
| | - Thomas B Chalk
- School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
- Aix Marseille Université, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Sumeet Mahajan
- Department of Chemistry and Institute for Life Sciences, University of Southampton, Highfield Campus, University Road, Southampton, SO17 1BJ, UK
| | - J Andy Milton
- School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Tessa M Page
- School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Laura F Robinson
- School of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
| | - Joseph A Stewart
- School of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
| | - Gavin L Foster
- School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
5
|
Wilhelm K, Longman J, Standish CD, De Kock T. The Historic Built Environment As a Long-Term Geochemical Archive: Telling the Time on the Urban "Pollution Clock". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12362-12375. [PMID: 37436401 PMCID: PMC10448721 DOI: 10.1021/acs.est.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
This study introduces a novel methodology for utilizing historic built environments as reliable long-term geochemical archives, addressing a gap in the reconstruction of past anthropogenic pollution levels in urban settings. For the first time, we employ high-resolution laser ablation mass spectrometry for lead isotope (206Pb/207Pb and 208Pb/206Pb) analysis on 350-year-old black crust stratigraphies found on historic built structures, providing insights into past air pollution signatures. Our findings reveal a gradual shift in the crust stratigraphy toward lower 206Pb/207Pb and higher 208Pb/206Pb isotope ratios from the older to the younger layers, indicating changes in lead sources over time. Mass balance analysis of the isotope data shows black crust layers formed since 1669 primarily contain over 90% Pb from coal burning, while other lead sources from a set of modern pollution including but not limited to leaded gasoline (introduced after 1920) become dominant (up to 60%) from 1875 onward. In contrast to global archives such as ice cores that provide integrated signals of long-distance pollution, our study contributes to a deeper understanding of localized pollution levels, specifically in urban settings. Our approach complements multiple sources of evidence, enhancing our understanding of air pollution dynamics and trends, and the impact of human activities on urban environments.
Collapse
Affiliation(s)
- Katrin Wilhelm
- Oxford
Resilient Buildings and Landscapes Laboratory (OxRBL), School of Geography
and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, U.K.
| | - Jack Longman
- Marine
Isotope Geochemistry, Institute for Chemistry and Biology of the Marine
Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Department
of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United
Kingdom
| | - Christopher D. Standish
- School
of Ocean & Earth Sciences, University
of Southampton, National Oceanography Centre, European Way, Southampton, SO14 3ZH, U.K.
| | - Tim De Kock
- Antwerp
Cultural Heritage Sciences (ARCHES), Faculty of Design, University of Antwerp Blindestraat 9, 2000 Antwerp, Belgium
| |
Collapse
|
6
|
Canesi M, Douville E, Montagna P, Taviani M, Stolarski J, Bordier L, Dapoigny A, Coulibaly GEH, Simon AC, Agelou M, Fin J, Metzl N, Iwankow G, Allemand D, Planes S, Moulin C, Lombard F, Bourdin G, Troublé R, Agostini S, Banaigs B, Boissin E, Boss E, Bowler C, de Vargas C, Flores M, Forcioli D, Furla P, Gilson E, Galand PE, Pesant S, Sunagawa S, Thomas OP, Vega Thurber R, Voolstra CR, Wincker P, Zoccola D, Reynaud S. Differences in carbonate chemistry up-regulation of long-lived reef-building corals. Sci Rep 2023; 13:11589. [PMID: 37463961 DOI: 10.1038/s41598-023-37598-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.
Collapse
Affiliation(s)
- Marine Canesi
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France.
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco.
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Paolo Montagna
- Institute of Polar Sciences (ISP), CNR, Via Gobetti 101, 40129, Bologna, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Marco Taviani
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Institute of Marine Sciences (ISMAR), CNR, Via Gobetti 101, 40129, Bologna, Italy
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, 00818, Warsaw, Poland
| | - Louise Bordier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Arnaud Dapoigny
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Gninwoyo Eric Hermann Coulibaly
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | | | | | - Jonathan Fin
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005, Paris, France
| | - Nicolas Metzl
- Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, 75005, Paris, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| | - Serge Planes
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | | | - Fabien Lombard
- Institut de la Mer de Villefranche Sur Mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 06230, Villefranche-sur-Mer, France
| | | | | | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Sorbonne Université, 29680, Roscoff, France
| | - Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - Paola Furla
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - Eric Gilson
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
- Institute for Research on Cancer and Aging (IRCAN), Nice, France
- Department of Medical Genetics, CHU, Nice, France
| | - Pierre E Galand
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Sorbonne Université, 66650, Banyuls sur Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, 98000, Monaco City, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco - U FR, Monaco City, Monaco
| |
Collapse
|