1
|
Venkatesan RT, Rani A, Umesh S, Sushil K, Kumar DA, Sowmya P, Kesavan M, Singh RB, Panchasara HH, Kumar SA, Chhaya R. Genome-wide scan for SNPs and selective sweeps reveals candidate genes and QTLs for milk production and reproduction traits in Indian Kankrej cattle. 3 Biotech 2025; 15:90. [PMID: 40092452 PMCID: PMC11909306 DOI: 10.1007/s13205-025-04263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Genome-wide identification and annotation of SNPs and selective sweeps was done in Kankrej cattle using the ddRAD sequencing method. Identified 1,983,581 SNPs and nearly half (48.81%) of the effects were found in intron region. Around 624 SNPs annotated in 215 candidate genes were associated with various milk production and reproduction traits. The degree of heterozygosity as 0.2907 against expected heterozygosity of 0.3216. Identified 300 candidate selective sweeps and functional profiling of genes in selective sweep regions resulted with 20 significant (adj p < 0.05) functions. Functional annotation revealed 53.2% of QTLs for milk association while 15.33% for production association, 10.68% for reproduction association, and 8.4% for exterior association. The functional enrichment analysis revealed the presence of significant QTLs in 14 chromosomes. The QTL for milk protein percentage was identified as the top most significant milk type along with the milk potassium content, milk casein percentage, milk yield, milk fat yield, etc. The interval to first estrus after calving, age at puberty, calving interval, conception rate, and birth index were some of the significant QTLs identified for reproduction traits. Genes related to keratinization indicated the selection signature in relation to environmental stressors contributing to adaptation of animals to tropical climatic condition. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04263-z.
Collapse
Affiliation(s)
| | - Alex Rani
- ICAR-National Dairy Research Institute, Karnal, Haryana India
| | - Singh Umesh
- Bihar Animal Sciences University, Patna, Bihar India
| | - Kumar Sushil
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| | - Das Achintya Kumar
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| | - Pulapet Sowmya
- Oneomics Private Limited, Bharathidasan University Technology Park, Khajamalai Campus, Tiruchirappalli, Tamil Nadu India
| | - Markkandan Kesavan
- Oneomics Private Limited, Bharathidasan University Technology Park, Khajamalai Campus, Tiruchirappalli, Tamil Nadu India
| | | | - H. H. Panchasara
- Livestock Research Station, Kamdhenu University, Dantiwada, Gujarat India
| | - Singh Amit Kumar
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| | - Rani Chhaya
- ICAR-Central Institute for Research on Cattle, Meerut, Uttar Pradesh India
| |
Collapse
|
2
|
Moreno-Contreras VI, Delgado-Gardea MCE, Ramos-Hernández JA, Mendez-Tenorio A, Varela-Rodríguez H, Sánchez-Ramírez B, Muñoz-Ramírez ZY, Infante-Ramírez R. Genome-Wide Identification and Characterization of SNPs and InDels of Capsicum annuum var. glabriusculum from Mexico Based on Whole Genome Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:3248. [PMID: 39599457 PMCID: PMC11597950 DOI: 10.3390/plants13223248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Capsicum annuum var. glabriusculum is an economically important horticultural crop and is considered the wild genetic ancestor of chili peppers. The distribution range extends from southern North America, through Central America, to South America. Approximately 226 million 150 paired-end reads were generated from CHMX_Ch1 (a C. annuum from Chihuahua, Mexico). To compare with the CHMX_Ch1 genome, high-quality reads from QO (a C. annuum from Querétaro, Mexico) were downloaded from the NCBI database. A total of 210,324 variants were detected in CHMX_Ch1, whereas 169,718 variants were identified in QO, all compared to the domesticated C. annuum reference genome, UCD10Xv1.1. This comprised 203,990 SNPs and 6334 InDels in CHMX_Ch1 and 164,955 SNPs and 4763 InDels in QO. The variants with high and moderate impact were identified as missense, splice acceptor, splice donor, start lost, stop gain, stop lost, frameshift, insertion, and deletion effects. The candidate genes with the highest fold enrichment values among the SNPs were predominantly involved in gene regulation and metabolic processes. InDels were associated with nuclear and transcriptional regulator activity in both genomes. Overall, a greater number of variants were found in CHMX_Ch1 compared to QO. This study provides knowledge of the principal functions associated with high- and moderate-impact variants and supplies a resource for further investigations of the genetic characteristics of these chiltepin peppers.
Collapse
Affiliation(s)
- Valeria Itzel Moreno-Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Ma. Carmen E. Delgado-Gardea
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Jesús A. Ramos-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico
| | - Hugo Varela-Rodríguez
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Zilia Y. Muñoz-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Rocío Infante-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| |
Collapse
|
3
|
Shivaprasad KM, Aski M, Mishra GP, Sinha SK, Gupta S, Mishra DC, Singh AK, Singh A, Tripathi K, Kumar RR, Kumar A, Kumar S, Dikshit HK. Genome-wide discovery of InDels and validation of PCR-Based InDel markers for earliness in a RIL population and genotypes of lentil (Lens culinaris Medik.). PLoS One 2024; 19:e0302870. [PMID: 38776345 PMCID: PMC11111061 DOI: 10.1371/journal.pone.0302870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.
Collapse
Affiliation(s)
- K. M. Shivaprasad
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Forestry Research and Education-Institute of Forest Biodiversity, Hyderabad, India
| | - Muraleedhar Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan Prakash Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India
| | - Soma Gupta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | | | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Akanksha Singh
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science Complex, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science Complex, New Delhi, India
| | - Harsh K. Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Jabeen S, Saif R, Haq R, Hayat A, Naz S. Whole-genome sequencing and variant discovery of Citrus reticulata "Kinnow" from Pakistan. Funct Integr Genomics 2023; 23:227. [PMID: 37422603 DOI: 10.1007/s10142-023-01153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Citrus is a source of nutritional and medicinal advantages, cultivated worldwide with major groups of sweet oranges, mandarins, grapefruits, kumquats, lemons and limes. Pakistan produces all major citrus groups with mandarin (Citrus reticulata) being the prominent group that includes local commercial cultivars Feutral's Early, Dancy, Honey, and Kinnow. The present study designed to understand the genetic architecture of this unique variety of Citrus reticulata 'Kinnow.' The whole-genome resequencing and variant calling was performed to map the genomic variability that might be responsible for its particular characteristics like taste, seedlessness, juice content, thickness of peel, and shelf-life. A total of 139,436,350 raw sequence reads were generated with 20.9 Gb data in Fastq format having 98% effectiveness and 0.2% base call error rate. Overall, 3,503,033 SNPs, 176,949 MNPs, 323,287 INS, and 333,083 DEL were identified using the GATK4 variant calling pipeline against Citrus clementina. Furthermore, g:Profiler was applied for annotating the newly found variants, harbor genes/transcripts and their involved pathways. A total of 73,864 transcripts harbors 4,336,352 variants, most of the observed variants were predicted in non-coding regions and 1009 transcripts were found well annotated by different databases. Out of total aforementioned transcripts, 588 involved in biological processes, 234 in molecular functions and 167 transcripts in cellular components. In a nutshell, 18,153 high impact variants and 216 genic variants found in the current study, which may be used after its functional validation for marker-assisted breeding programs of "Kinnow" to propagate its valued traits for the improvement of contemporary citrus varieties in the region.
Collapse
Affiliation(s)
- Sadia Jabeen
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rashid Saif
- Department of Biotechnology, Qarshi University, Lahore, Pakistan
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan
| | - Rukhama Haq
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Akbar Hayat
- Citrus Research Institute, Sargodha, Pakistan
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| |
Collapse
|
5
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|