1
|
Li HX, He YM, Fei J, Guo M, Zeng C, Yan PJ, Xu Y, Qin G, Teng FY. The G-quadruplex ligand CX-5461: an innovative candidate for disease treatment. J Transl Med 2025; 23:457. [PMID: 40251554 PMCID: PMC12007140 DOI: 10.1186/s12967-025-06473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The ribosomal DNA (rDNA) plays a vital role in regulating protein synthesis by ribosome biogenesis, essential for maintaining cellular growth, metabolism, and more. Cancer cells show a high dependence on ribosome biogenesis and exhibit elevated rDNA transcriptional activity. CX-5461, also known as Pidnarulex, is a First-in-Class anticancer drug that has received 'Fast Track Designation' approval from the FDA. Initially reported to inhibit Pol I-driven rDNA transcription, CX-5461 was recently identified as a G-quadruplex structure (G4) stabilizer and is currently completed or undergoing multiple Phase I clinical trials in patients with breast and ovarian cancers harboring BRCA1/2, PALB2, or other DNA repair deficiencies. Additionally, preclinical studies have confirmed that CX-5461 demonstrates promising therapeutic effects against multifarious non-cancer diseases, including viral infections, and autoimmune diseases. This review summarizes the mechanisms of CX-5461, including its transcriptional inhibition of rDNA, binding to G4, and toxicity towards topoisomerase, along with its research status and therapeutic effects across various diseases. Lastly, this review highlights the targeted therapy strategy of CX-5461 based on nanomedicine delivery, particularly the drug delivery utilizing the nucleic acid aptamer AS1411, which contains a G4 motif to specifically target the highly expressed nucleolin on the surface of tumor cell membranes; It also anticipates the strategy of coupling CX-5461 with peptide nucleic acids and locked nucleic acids to achieve dual targeting, thereby realizing individualized G4-targeting by CX-5461. This review aims to provide a general overview of the progress of CX-5461 in recent years and suggest potential strategies for disease treatment involving ribosomal RNA synthesis, G4, and topoisomerase.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
| | - Yi-Meng He
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Fang-Yuan Teng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Nihira NT, Wu W, Hosoi M, Togashi Y, Sunada S, Miyoshi Y, Miki Y, Ohta T. Nuclear PD-L1 triggers tumour-associated inflammation upon DNA damage. EMBO Rep 2025; 26:635-655. [PMID: 39747659 PMCID: PMC11811057 DOI: 10.1038/s44319-024-00354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Immune checkpoint inhibitors against PD-1/PD-L1 are highly effective in immunologically hot tumours such as triple-negative breast cancer, wherein constitutive DNA damage promotes inflammation, while inducing PD-L1 expression to avoid attack by cytotoxic T cells. However, whether and how PD-L1 regulates the DNA damage response and inflammation remains unclear. Here, we show that nuclear PD-L1 activates the ATR-Chk1 pathway and induces proinflammatory chemocytokines upon genotoxic stress. PD-L1 interacts with ATR and is essential for Chk1 activation and chromatin binding. cGAS-STING and NF-κB activation in the late phase of the DNA damage response is inhibited by PD-L1 deletion or by inhibitors of ATR and Chk1. Consequently, the induction of proinflammatory chemocytokines at this stage is inhibited by deletion of PD-L1, but restored by the ATR activator Garcinone C. Inhibition of nuclear localisation by PD-L1 mutations or the HDAC2 inhibitor Santacruzamate A inhibits chemocytokine induction. Conversely, the p300 inhibitor C646, which accelerates PD-L1 nuclear localisation, promotes chemocytokine induction. These findings suggest that nuclear PD-L1 strengthens the properties of hot tumours and contributes to shaping the tumour microenvironment.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Mitsue Hosoi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan
| | - Shigeaki Sunada
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, 113-8421, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Yoshio Miki
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, 305-8550, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, 216-8511, Japan.
| |
Collapse
|
3
|
Engbrecht M, Grundei D, Dilger A, Wiedemann H, Aust AK, Baumgärtner S, Helfrich S, Kergl-Räpple F, Bürkle A, Mangerich A. Monitoring nucleolar-nucleoplasmic protein shuttling in living cells by high-content microscopy and automated image analysis. Nucleic Acids Res 2024; 52:e72. [PMID: 39036969 PMCID: PMC11347172 DOI: 10.1093/nar/gkae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleolus has core functions in ribosome biosynthesis, but also acts as a regulatory hub in a plethora of non-canonical processes, including cellular stress. Upon DNA damage, several DNA repair factors shuttle between the nucleolus and the nucleoplasm. Yet, the molecular mechanisms underlying such spatio-temporal protein dynamics remain to be deciphered. Here, we present a novel imaging platform to investigate nucleolar-nucleoplasmic protein shuttling in living cells. For image acquisition, we used a commercially available automated fluorescence microscope and for image analysis, we developed a KNIME workflow with implementation of machine learning-based tools. We validated the method with different nucleolar proteins, i.e., PARP1, TARG1 and APE1, by monitoring their shuttling dynamics upon oxidative stress. As a paradigm, we analyzed PARP1 shuttling upon H2O2 treatment in combination with a range of pharmacological inhibitors in a novel reporter cell line. These experiments revealed that inhibition of SIRT7 results in a loss of nucleolar PARP1 localization. Finally, we unraveled specific differences in PARP1 shuttling dynamics after co-treatment with H2O2 and different clinical PARP inhibitors. Collectively, this work delineates a highly sensitive and versatile bioimaging platform to investigate swift nucleolar-nucleoplasmic protein shuttling in living cells, which can be employed for pharmacological screening and in-depth mechanistic analyses.
Collapse
Affiliation(s)
- Marina Engbrecht
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - David Grundei
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Asisa M Dilger
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Hannah Wiedemann
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kristin Aust
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sarah Baumgärtner
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
4
|
Rodríguez Pérez F, Natwick D, Schiff L, McSwiggen D, Heckert A, Huey M, Morrison H, Loo M, Miranda RG, Filbin J, Ortega J, Van Buren K, Murnock D, Tao A, Butler R, Cheng K, Tarvestad W, Zhang Z, Gonzalez E, Miller RM, Kelly M, Tang Y, Ho J, Anderson D, Bashore C, Basham S. WRN inhibition leads to its chromatin-associated degradation via the PIAS4-RNF4-p97/VCP axis. Nat Commun 2024; 15:6059. [PMID: 39025847 PMCID: PMC11258360 DOI: 10.1038/s41467-024-50178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mandy Loo
- Eikon Therapeutics, Hayward, CA, 94545, USA
| | | | | | | | | | | | - Arnold Tao
- Eikon Therapeutics, Hayward, CA, 94545, USA
| | | | | | | | | | | | | | | | | | - Jaclyn Ho
- Eikon Therapeutics, Hayward, CA, 94545, USA
| | | | | | | |
Collapse
|
5
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
6
|
The ZZ domain of HERC2 is a receptor of arginylated substrates. Sci Rep 2022; 12:6063. [PMID: 35411094 PMCID: PMC9001736 DOI: 10.1038/s41598-022-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/01/2022] [Indexed: 01/18/2023] Open
Abstract
AbstractThe E3 ubiquitin ligase HERC2 has been linked to neurological diseases and cancer, however it remains a poorly characterized human protein. Here, we show that the ZZ domain of HERC2 (HERC2ZZ) recognizes a mimetic of the Nt-R cargo degradation signal. NMR titration experiments and mutagenesis results reveal that the Nt-R mimetic peptide occupies a well-defined binding site of HERC2ZZ comprising of the negatively charged aspartic acids. We report the crystal structure of the DOC domain of HERC2 (HERC2DOC) that is adjacent to HERC2ZZ and show that a conformational rearrangement in the protein may occur when the two domains are linked. Immunofluorescence microscopy data suggest that the stimulation of autophagy promotes targeting of HERC2 to the proteasome. Our findings suggest a role of cytosolic HERC2 in the ubiquitin-dependent degradation pathways.
Collapse
|
7
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
8
|
Hsu TY, Hsu LN, Chen SY, Juang BT. MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells 2021; 10:cells10123457. [PMID: 34943966 PMCID: PMC8700014 DOI: 10.3390/cells10123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Cell and Tissue Biology, University of California, 513 Parnassus, San Francisco, CA 94143, USA
| | - Ling-Nung Hsu
- Occupational Safety and Health Office, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan;
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
10
|
Xuan J, Gitareja K, Brajanovski N, Sanij E. Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes (Basel) 2021; 12:genes12081156. [PMID: 34440328 PMCID: PMC8393943 DOI: 10.3390/genes12081156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
Collapse
Affiliation(s)
- Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kezia Gitareja
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine -St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-5279
| |
Collapse
|