1
|
Li G, Du J, Li X, Zhuge S, Ren S, Wu M, Ma H, Guo X, Chen Z, Ding H. bk-5 214S2L , an allelic variant of bk-5, as high-quality silage maize genetic resource. Front Genet 2025; 16:1483839. [PMID: 40092558 PMCID: PMC11906420 DOI: 10.3389/fgene.2025.1483839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Stem brittleness significantly affects both yield and quality of maize. Methods Using phenotypic identification and sequence analysis, we identified a new brittle stalk maize mutant. Furthermore, we assessed its feeding value by content determination of cellulose, hemicellulose, lignin crude fiber, starch, and protein contents. Results Here, we identified a brittle stalk maize mutant, bk-5 214S2L , an allelic variant of bk-5. The stem brittleness of bk-5 214S2L was similar to that of bk-5, but not identical. Unlike bk-5, bk-5 214S2L leaves did not fall off completely and its stems did not break in windy conditions. We identified a missense mutation (C>T) in the fifth exon of the candidate gene Zm00001d043477, resulting in an amino acid change from serine to leucine at position 214. A significant reduction in cell wall thickness in the leaf veins and stems of bk-5 214S2L compared with the inbred line RP125. Among the major cell wall components in stems and leaves, total cellulose, hemicellulose, and lignin were lower in bk-5 214S2L than in RP125. We also evaluated the application value of bk-5 214S2L silage and found that the detergent fiber contents of bk-5 214S2L stems were significantly reduced compared with RP125, while the crude fiber, starch, and protein contents remained unchanged. The reduced tannin content improved the palatability of the silage for livestock. Conclusion Overall, bk-5 214S2L , an allelic variant of bk-5, is a high-quality genetic resource for breeding forage and grain-feed maize.
Collapse
Affiliation(s)
- Gang Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jiyuan Du
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiaohu Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shilin Zhuge
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shuolin Ren
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Min Wu
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Haoran Ma
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xinrui Guo
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ziqiang Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Haiping Ding
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
2
|
Scharwies JD, Clarke T, Zheng Z, Dinneny A, Birkeland S, Veltman MA, Sturrock CJ, Banda J, Torres-Martínez HH, Viana WG, Khare R, Kieber J, Pandey BK, Bennett M, Schnable PS, Dinneny JR. Moisture-responsive root-branching pathways identified in diverse maize breeding germplasm. Science 2025; 387:666-673. [PMID: 39913586 PMCID: PMC11956805 DOI: 10.1126/science.ads5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 04/02/2025]
Abstract
Plants grow complex root systems to extract unevenly distributed resources from soils. Spatial differences in soil moisture are perceived by root tips, leading to the patterning of new root branches toward available water in a process called hydropatterning. Little is known about hydropatterning behavior and its genetic basis in crop plants. Here, we developed an assay to measure hydropatterning in maize and revealed substantial differences between tropical/subtropical and temperate maize breeding germplasm that likely resulted from divergent selection. Genetic analysis of hydropatterning confirmed the regulatory role of auxin and revealed that the gaseous hormone ethylene locally inhibits root branching from air-exposed tissues. Our results demonstrate how distinct signaling pathways translate spatial patterns of water availability to developmental programs that determine root architecture.
Collapse
Affiliation(s)
| | - Taylor Clarke
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Zihao Zheng
- Department of Agronomy, Iowa State University; Ames, IA 50011-1085, USA
| | - Andrea Dinneny
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Siri Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences; Ås, 1432, Norway
| | | | - Craig J. Sturrock
- Plant and Crop Sciences, School of Biosciences, University of Nottingham; Sutton Bonington, LE12 5RD, UK
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, University of Nottingham; Sutton Bonington, LE12 5RD, UK
| | | | - Willian G. Viana
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Ria Khare
- Department of Biology, University of North Carolina; Chapel Hill, NC 27599, USA
| | - Joseph Kieber
- Department of Biology, University of North Carolina; Chapel Hill, NC 27599, USA
| | - Bipin K. Pandey
- Plant and Crop Sciences, School of Biosciences, University of Nottingham; Sutton Bonington, LE12 5RD, UK
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham; Sutton Bonington, LE12 5RD, UK
| | | | - José R. Dinneny
- Department of Biology, Stanford University; Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
3
|
Qu J, Yu D, Gu W, Khalid MHB, Kuang H, Dang D, Wang H, Prasanna B, Zhang X, Zhang A, Zheng H, Guan Y. Genetic architecture of kernel-related traits in sweet and waxy maize revealed by genome-wide association analysis. Front Genet 2024; 15:1431043. [PMID: 39399216 PMCID: PMC11466784 DOI: 10.3389/fgene.2024.1431043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Maize (Zea mays L.) is one of the most important crops worldwide, the kernel size-related traits are the major components of maize grain yield. Methods To dissect the genetic architecture of four kernel-related traits of 100-kernel weight, kernel length, kernel width, and kernel diameter, a genome-wide association study (GWAS) was conducted in the waxy and sweet maize panel comprising of 447 maize inbred lines re-sequenced at the 5× coverage depth. GWAS analysis was carried out with the mixed linear model using 1,684,029 high-quality SNP markers. Results In total, 49 SNPs significantly associated with the four kernel-related traits were identified, including 46 SNPs on chromosome 3, two SNPs on chromosome 4, and one SNP on chromosome 7. Haplotype regression analysis identified 338 haplotypes that significantly affected these four kernel-related traits. Genomic selection (GS) results revealed that a set of 10,000 SNPs and a training population size of 30% are sufficient for the application of GS in waxy and sweet maize breeding for kernel weight and kernel size. Forty candidate genes associated with the four kernel-related traits were identified, including both Zm00001d000707 and Zm00001d044139 expressed in the kernel development tissues and stages with unknown functions. Discussion These significant SNPs and important haplotypes provide valuable information for developing functional markers for the implementation of marker-assisted selection in breeding. The molecular mechanism of Zm00001d000707 and Zm00001d044139 regulating these kernel-related traits needs to be investigated further.
Collapse
Affiliation(s)
- Jingtao Qu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Diansi Yu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Gu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Huiyun Kuang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongdong Dang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Wang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
5
|
Mora-Poblete F, Maldonado C, Henrique L, Uhdre R, Scapim CA, Mangolim CA. Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1153040. [PMID: 37593046 PMCID: PMC10428628 DOI: 10.3389/fpls.2023.1153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Maize (Zea mays L.), the third most widely cultivated cereal crop in the world, plays a critical role in global food security. To improve the efficiency of selecting superior genotypes in breeding programs, researchers have aimed to identify key genomic regions that impact agronomic traits. In this study, the performance of multi-trait, multi-environment deep learning models was compared to that of Bayesian models (Markov Chain Monte Carlo generalized linear mixed models (MCMCglmm), Bayesian Genomic Genotype-Environment Interaction (BGGE), and Bayesian Multi-Trait and Multi-Environment (BMTME)) in terms of the prediction accuracy of flowering-related traits (Anthesis-Silking Interval: ASI, Female Flowering: FF, and Male Flowering: MF). A tropical maize panel of 258 inbred lines from Brazil was evaluated in three sites (Cambira-2018, Sabaudia-2018, and Iguatemi-2020 and 2021) using approximately 290,000 single nucleotide polymorphisms (SNPs). The results demonstrated a 14.4% increase in prediction accuracy when employing multi-trait models compared to the use of a single trait in a single environment approach. The accuracy of predictions also improved by 6.4% when using a single trait in a multi-environment scheme compared to using multi-trait analysis. Additionally, deep learning models consistently outperformed Bayesian models in both single and multiple trait and environment approaches. A complementary genome-wide association study identified associations with 26 candidate genes related to flowering time traits, and 31 marker-trait associations were identified, accounting for 37%, 37%, and 22% of the phenotypic variation of ASI, FF and MF, respectively. In conclusion, our findings suggest that deep learning models have the potential to significantly improve the accuracy of predictions, regardless of the approach used and provide support for the efficacy of this method in genomic selection for flowering-related traits in tropical maize.
Collapse
Affiliation(s)
| | - Carlos Maldonado
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Luma Henrique
- Department of Agronomy, State University of Maringá, Paraná, Brazil
| | - Renan Uhdre
- Department of Agronomy, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
6
|
Karnatam KS, Mythri B, Un Nisa W, Sharma H, Meena TK, Rana P, Vikal Y, Gowda M, Dhillon BS, Sandhu S. Silage maize as a potent candidate for sustainable animal husbandry development-perspectives and strategies for genetic enhancement. Front Genet 2023; 14:1150132. [PMID: 37303948 PMCID: PMC10250641 DOI: 10.3389/fgene.2023.1150132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Maize is recognized as the queen of cereals, with an ability to adapt to diverse agroecologies (from 58oN to 55oS latitude) and the highest genetic yield potential among cereals. Under contemporary conditions of global climate change, C4 maize crops offer resilience and sustainability to ensure food, nutritional security, and farmer livelihood. In the northwestern plains of India, maize is an important alternative to paddy for crop diversification in the wake of depleting water resources, reduced farm diversity, nutrient mining, and environmental pollution due to paddy straw burning. Owing to its quick growth, high biomass, good palatability, and absence of anti-nutritional components, maize is also one of the most nutritious non-legume green fodders. It is a high-energy, low-protein forage commonly used for dairy animals like cows and buffalos, often in combination with a complementary high-protein forage such as alfalfa. Maize is also preferred for silage over other fodders due to its softness, high starch content, and sufficient soluble sugars required for proper ensiling. With a rapid population increase in developing countries like China and India, there is an upsurge in meat consumption and, hence, the requirement for animal feed, which entails high usage of maize. The global maize silage market is projected to grow at a compound annual growth rate of 7.84% from 2021 to 2030. Factors such as increasing demand for sustainable and environment-friendly food sources coupled with rising health awareness are fueling this growth. With the dairy sector growing at about 4%-5% and the increasing shortage faced for fodder, demand for silage maize is expected to increase worldwide. The progress in improved mechanization for the provision of silage maize, reduced labor demand, lack of moisture-related marketing issues as associated with grain maize, early vacancy of farms for next crops, and easy and economical form of feed to sustain household dairy sector make maize silage a profitable venture. However, sustaining the profitability of this enterprise requires the development of hybrids specific for silage production. Little attention has yet been paid to breeding for a plant ideotype for silage with specific consideration of traits such as dry matter yield, nutrient yield, energy in organic matter, genetic architecture of cell wall components determining their digestibility, stalk standability, maturity span, and losses during ensiling. This review explores the available information on the underlying genetic mechanisms and gene/gene families impacting silage yield and quality. The trade-offs between yield and nutritive value in relation to crop duration are also discussed. Based on available genetic information on inheritance and molecular aspects, breeding strategies are proposed to develop maize ideotypes for silage for the development of sustainable animal husbandry.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Bikkasani Mythri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Wajhat Un Nisa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Heena Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Tarun Kumar Meena
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prabhat Rana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Baldev Singh Dhillon
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
7
|
Shikha K, Madhumal Thayil V, Shahi JP, Zaidi PH, Seetharam K, Nair SK, Singh R, Tosh G, Singamsetti A, Singh S, Sinha B. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Sci Rep 2023; 13:6297. [PMID: 37072497 PMCID: PMC10113201 DOI: 10.1038/s41598-023-33250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Maize is gaining impetus in non-traditional and non-conventional seasons such as off-season, primarily due to higher demand and economic returns. Maize varieties directed for growing in the winter season of South Asia must have cold resilience as an important trait due to the low prevailing temperatures and frequent cold snaps observed during this season in most parts of the lowland tropics of Asia. The current study involved screening of a panel of advanced tropically adapted maize lines to cold stress during vegetative and flowering stage under field conditions. A suite of significant genomic loci (28) associated with grain yield along and agronomic traits such as flowering (15) and plant height (6) under cold stress environments. The haplotype regression revealed 6 significant haplotype blocks for grain yield under cold stress across the test environments. Haplotype blocks particularly on chromosomes 5 (bin5.07), 6 (bin6.02), and 9 (9.03) co-located to regions/bins that have been identified to contain candidate genes involved in membrane transport system that would provide essential tolerance to the plant. The regions on chromosome 1 (bin1.04), 2 (bin 2.07), 3 (bin 3.05-3.06), 5 (bin5.03), 8 (bin8.05-8.06) also harboured significant SNPs for the other agronomic traits. In addition, the study also looked at the plausibility of identifying tropically adapted maize lines from the working germplasm with cold resilience across growth stages and identified four lines that could be used as breeding starts in the tropical maize breeding pipelines.
Collapse
Affiliation(s)
- Kumari Shikha
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - Vinayan Madhumal Thayil
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India.
| | - J P Shahi
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - P H Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Kaliyamoorthy Seetharam
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Sudha K Nair
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Raju Singh
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Garg Tosh
- Punjab Agricultural University (PAU), Ludhiana, India
| | - Ashok Singamsetti
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - Saurabh Singh
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - B Sinha
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
8
|
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, Vemula S, Kaur B, Singh V, Tseng TM. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol 2022; 44:5440-5473. [PMID: 36354681 PMCID: PMC9688858 DOI: 10.3390/cimb44110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.
Collapse
Affiliation(s)
- Pawan Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Science University, Barnala 148107, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Anju Biswas
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Sumandeep Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, WA 57007, USA
| | - Harpreet Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88001, USA
| | - Ishveen Kaur
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Harpreet Kaur
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Shailaja Vemula
- Agronomy Department, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
9
|
Liu J, Sun C, Guo S, Yin X, Yuan Y, Fan B, Lv Q, Cai X, Zhong Y, Xia Y, Dong X, Guo Z, Song G, Huang W. Genomic and Transcriptomic Analyses Reveal Pathways and Genes Associated With Brittle Stalk Phenotype in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:849421. [PMID: 35548303 PMCID: PMC9083323 DOI: 10.3389/fpls.2022.849421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The mechanical strength of the stalk affects the lodging resistance and digestibility of the stalk in maize. The molecular mechanisms regulating the brittleness of stalks in maize remain undefined. In this study, we constructed the maize brittle stalk mutant (bk5) by crossing the W22:Mu line with the Zheng 58 line. The brittle phenotype of the mutant bk5 existed in all of the plant organs after the five-leaf stage. Compared to wild-type (WT) plants, the sclerenchyma cells of bk5 stalks had a looser cell arrangement and thinner cell wall. Determination of cell wall composition showed that obvious differences in cellulose content, lignin content, starch content, and total soluble sugar were found between bk5 and WT stalks. Furthermore, we identified 226 differentially expressed genes (DEGs), with 164 genes significantly upregulated and 62 genes significantly downregulated in RNA-seq analysis. Some pathways related to cellulose and lignin synthesis, such as endocytosis and glycosylphosphatidylinositol (GPI)-anchored biosynthesis, were identified by the Kyoto Encyclopedia of Gene and Genomes (KEGG) and gene ontology (GO) analysis. In bulked-segregant sequence analysis (BSA-seq), we detected 2,931,692 high-quality Single Nucleotide Polymorphisms (SNPs) and identified five overlapped regions (11.2 Mb) containing 17 candidate genes with missense mutations or premature termination codons using the SNP-index methods. Some genes were involved in the cellulose synthesis-related genes such as ENTH/ANTH/VHS superfamily protein gene (endocytosis-related gene) and the lignin synthesis-related genes such as the cytochrome p450 gene. Some of these candidate genes identified from BSA-seq also existed with differential expression in RNA-seq analysis. These findings increase our understanding of the molecular mechanisms regulating the brittle stalk phenotype in maize.
Collapse
Affiliation(s)
- Jun Liu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chuanbo Sun
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Siqi Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaohong Yin
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuling Yuan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Bing Fan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xinru Cai
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yi Zhong
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuanfeng Xia
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xiaomei Dong
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhifu Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wei Huang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|