1
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. Dev Cell 2024; 59:2912-2930.e7. [PMID: 39121855 DOI: 10.1016/j.devcel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Song L, Li Q, Xia L, Sahay AE, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. Nat Commun 2024; 15:5937. [PMID: 39009564 PMCID: PMC11250843 DOI: 10.1038/s41467-024-50171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.
Collapse
Affiliation(s)
- Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingbo Xia
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arushi Eesha Sahay
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Song L, Li Q, Xia L, Sahay A, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-Cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.591709. [PMID: 38766219 PMCID: PMC11100752 DOI: 10.1101/2024.05.09.591709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.
Collapse
|
4
|
Wen S, Lv X, Li P, Li J, Qin D. Analysis of cancer-associated fibroblasts in cervical cancer by single-cell RNA sequencing. Aging (Albany NY) 2023; 15:15340-15359. [PMID: 38157264 PMCID: PMC10781451 DOI: 10.18632/aging.205353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Since scRNA-seq is an effective tool to study tumor heterogeneity, this paper intends to reveal the differences of cervical cancer in patients at the individual cell level by scRNA-seq, and focus on the biological functions of cancer-associated fibroblasts (CAFs) in cervical cancer, facilitating the provision of a new interpretation of the heterogeneity of the microenvironment of cervical cancer, and an in-depth exploration of the pathogenesis of cervical cancer as well as pursuit of effective means of treatment intake. METHODS 3 cervical cancer specimens were collected by clinical surgery for single-cell RNA sequencing. Cell suspensions of fresh cervical cancer tissues were prepared, and cDNA libraries were created and sequenced on the machine. Furthermore, the sequencing data were analyzed using bioinformatics, including descending clustering of cells, identification of cell populations, mimetic time series analysis, inferCNV, cell communication analysis, and identification of transcription factors. RESULTS A total of 9 cell types were identified, encompassing T cells, epithelial cells, smooth muscle cells, CAFs, endothelial cells, macrophages, B cells, lymphocytes, and plasma cells. CAFs were further divided into three cell subtypes, named type1 cells, type2 cells, and type3 cells. With key transcription factors for the three cells, TCF21, ZC3H11A, and MYEF2 obtained, this research revealed the communication relationship between CAFs and several other cells, and found an important role of CAFs in the MK signaling pathway. CONCLUSIONS scRNA-seq technology contributed to exploring the tumor heterogeneity of cervical cancer more deeply, and also further gaining insight into the biological functions of CAFs in cervical cancer.
Collapse
Affiliation(s)
- Shuang Wen
- Reproductive Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuefeng Lv
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengxiang Li
- Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Jinpeng Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongchun Qin
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540880. [PMID: 37293066 PMCID: PMC10245679 DOI: 10.1101/2023.05.16.540880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian kidneys maintain fluid homeostasis through the cellular activity of nephrons and the conjoined collecting system. Each epithelial network originates from distinct progenitor cell populations that reciprocally interact during development. To extend our understanding of human and mouse kidney development, we profiled chromatin organization (ATAC-seq) and gene expression (RNA-seq) in developing human and mouse kidneys. Data were analyzed at a species level and then integrated into a common, cross-species multimodal data set. Comparative analysis of cell types and developmental trajectories identified conserved and divergent features of chromatin organization and linked gene activity, revealing species- and cell-type specific regulatory programs. Identification of human-specific enhancer regions linked through GWAS studies to kidney disease highlights the potential of developmental modeling to provide clinical insight.
Collapse
|
6
|
Stefansson VTN, Nair V, Melsom T, Looker HC, Mariani LH, Fermin D, Eichinger F, Menon R, Subramanian L, Ladd P, Harned R, Harder JL, Hodgin JB, Bjornstad P, Nelson PJ, Eriksen BO, Nelson RG, Kretzler M. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease. Kidney Int 2022; 102:1345-1358. [PMID: 36055599 PMCID: PMC10161735 DOI: 10.1016/j.kint.2022.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Hyperfiltration is a state of high glomerular filtration rate (GFR) observed in early diabetes that damages glomeruli, resulting in an iterative process of increasing filtration load on fewer and fewer remaining functional glomeruli. To delineate underlying cellular mechanisms of damage associated with hyperfiltration, transcriptional profiles of kidney biopsies from Pima Indians with type 2 diabetes with or without early-stage diabetic kidney disease were grouped into two hyperfiltration categories based on annual iothalamate GFR measurements. Twenty-six participants with a peak GFR measurement within two years of biopsy were categorized as the hyperfiltration group, and 26 in whom biopsy preceded peak GFR by over two years were considered pre-hyperfiltration. The hyperfiltration group had higher hemoglobin A1c, higher urine albumin-to-creatinine ratio, increased glomerular basement membrane width and lower podocyte density compared to the pre-hyperfiltration group. A glomerular 1240-gene transcriptional signature identified in the hyperfiltration group was enriched for endothelial stress response signaling genes, including endothelin-1, tec-kinase and transforming growth factor-β1 pathways, with the majority of the transcripts mapped to endothelial and inflammatory cell clusters in kidney single cell transcriptional data. Thus, our analysis reveals molecular pathomechanisms associated with hyperfiltration in early diabetic kidney disease involving putative ligand-receptor pairs with downstream intracellular targets linked to cellular crosstalk between endothelial and mesangial cells.
Collapse
Affiliation(s)
- Vidar T N Stefansson
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway; Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Medical Clinic and Policlinic IV, Nephrology Center, Department of Internal Medicine, University of Munich, Munich, Germany
| | - Toralf Melsom
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway; Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Laura H Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lalita Subramanian
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Patricia Ladd
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Roger Harned
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jennifer L Harder
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter J Nelson
- Medical Clinic and Policlinic IV, Nephrology Center, Department of Internal Medicine, University of Munich, Munich, Germany
| | - Bjørn O Eriksen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway; Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Abstract
The field of single-cell genomics and spatial technologies is rapidly evolving and has already provided unprecedented insights into complex tissues. Major advances have been made in dissecting the cellular composition and spatiotemporal interactions that mediate developmental processes in the fetal kidney. Single-cell technologies have also provided detailed insights into the heterogeneity of cell types within the healthy adult and shed light on the complex cellular mechanisms that contribute to kidney disease. The in-depth characterization of specific cell types associated with acute kidney injury and glomerular diseases has potential for the development of prognostic biomarkers and new therapeutics. Analyses of pathway activity in clear-cell renal cell carcinoma can predict the sensitivity of tumour cells to specific inhibitors. The identification of the cell of origin of renal cell carcinoma and of new cell types within the tumour microenvironment also has implications for the development of targeted therapeutics. Similarly, single-cell sequencing has provided new insights into the mechanisms underlying kidney fibrosis, specifically our understanding of myofibroblast origins and the contribution of cell crosstalk within the fibrotic niche to disease progression. These and future studies will enable the creation of a map to aid our understanding of the cellular processes and interactions in the developing, healthy and diseased kidney.
Collapse
|
8
|
Matsumoto A, Matsui I, Mano K, Mizuno H, Katsuma Y, Yasuda S, Shimada K, Inoue K, Oki T, Hanai T, Kojima K, Kaneko T, Isaka Y. Recurrent membranous nephropathy with a possible alteration in the etiology: a case report. BMC Nephrol 2021; 22:253. [PMID: 34229600 PMCID: PMC8258946 DOI: 10.1186/s12882-021-02457-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background Phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type-1 domain-containing 7A (THSD7A) are the two major pathogenic antigens for membranous nephropathy (MN). It has been reported that THSD7A-associated MN has a higher prevalence of comorbid malignancy than PLA2R1-associated MN. Here we present a case of MN whose etiology might change from idiopathic to malignancy-associated MN during the patient’s clinical course. Case presentation A 68-year-old man with nephrotic syndrome was diagnosed with MN by renal biopsy. Immunohistochemistry showed that the kidney specimen was negative for THSD7A. The first course of corticosteroid therapy achieved partial remission; however, nephrotic syndrome recurred 1 year later. Two years later, his abdominal echography revealed a urinary bladder tumor, but he did not wish to undergo additional diagnostic examinations. Because his proteinuria increased consecutively, corticosteroid therapy was resumed, but it failed to achieve remission. Another kidney biopsy was performed and revealed MN with positive staining for THSD7A. PLA2R1 staining levels were negative for both first and second biopsies. Because his bladder tumor had gradually enlarged, he agreed to undergo bladder tumor resection. Pathological examination indicated that the tumor was THDS7A-positive bladder cancer. Subsequently, his proteinuria decreased and remained in remission. Conclusions This case suggests that the etiology of MN might be altered during the therapeutic course. Intensive screening for malignancy may be preferable in patients with unexpected recurrence of proteinuria and/or change in therapy response. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02457-0.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Keiji Mano
- Department of Nephrology, Daini Osaka Police Hospital, 2-6-40, Karasuga-tsuji, Tennoji, Osaka, 543-8922, Japan
| | - Hitoshi Mizuno
- Department of Nephrology, Daini Osaka Police Hospital, 2-6-40, Karasuga-tsuji, Tennoji, Osaka, 543-8922, Japan
| | - Yusuke Katsuma
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Karin Shimada
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takashi Oki
- Department of Urology, Mimihara General Hospital, 4-465, kyowacho, Sakai-ku, Sakai, Osaka, 590-8505, Japan
| | - Tadashi Hanai
- Department of Urology, Daini Osaka Police Hospital, 2-6-40, Karasuga-tsuji, Tennoji, Osaka, 543-8922, Japan
| | - Keiko Kojima
- Department of Pathology, Daini Osaka Police Hospital, 2-6-40, Karasuga-tsuji, Tennoji, Osaka, 543-8922, Japan
| | - Tetsuya Kaneko
- Department of Nephrology, Daini Osaka Police Hospital, 2-6-40, Karasuga-tsuji, Tennoji, Osaka, 543-8922, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Matsumoto A, Matsui I, Katsuma Y, Yasuda S, Shimada K, Namba-Hamano T, Sakaguchi Y, Kaimori JY, Takabatake Y, Inoue K, Isaka Y. Quantitative Analyses of Foot Processes, Mitochondria, and Basement Membranes by Structured Illumination Microscopy Using Elastica-Masson- and Periodic-Acid-Schiff-Stained Kidney Sections. Kidney Int Rep 2021; 6:1923-1938. [PMID: 34307987 PMCID: PMC8258503 DOI: 10.1016/j.ekir.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Foot process effacement and mitochondrial fission associate with kidney disease pathogenesis. Electron microscopy is the gold-standard method for their visualization, but the observable area of electron microscopy is smaller than light microscopy. It is important to develop alternative ways to quantitatively evaluate these microstructural changes because the lesion site of renal diseases can be focal. Methods We analyzed elastica-Masson trichrome (EMT) and periodic acid-Schiff (PAS) stained kidney sections using structured illumination microscopy (SIM). Results EMT staining revealed three-dimensional (3D) structures of foot process, whereas ponceau xylidine acid fuchsin azophloxine solution induced fluorescence. Conversion of foot process images into their constituent frequencies by Fourier transform showed that the concentric square of (1/4)2-(1/16)2 in the power spectra (PS) included information for normal periodic structures of foot processes. Foot process integrity, assessed by PS, negatively correlated with proteinuria. EMT-stained sections revealed fragmented mitochondria in mice with mitochondrial injuries and patients with tubulointerstitial nephritis; Fourier transform quantified associated mitochondrial injury. Quantified mitochondrial damage in patients with immunoglobulin A (IgA) nephropathy predicted a decline in estimated glomerular filtration rate (eGFR) after kidney biopsy but did not correlate with eGFR at biopsy. PAS-stained sections, excited by a 640 nm laser, combined with the coefficient of variation values, quantified subtle changes in the basement membranes of patients with membranous nephropathy stage I. Conclusions Kidney microstructures are quantified from sections prepared in clinical practice using SIM.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Katsuma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiichi Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Karin Shimada
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|