1
|
Wang J, Ren W, Li Z, Li L, Wang R, Ma S, Zeng Y, Meng J, Yao X. Plasma Lipidomics and Proteomics Analyses Pre- and Post-5000 m Race in Yili Horses. Animals (Basel) 2025; 15:994. [PMID: 40218387 PMCID: PMC11987874 DOI: 10.3390/ani15070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The impact of exercise on human metabolism has been extensively studied, yet limited research exists on the effects of high-intensity racing on equine metabolism. The aim of this study was to screen the effect of a 5000 m race on lipids and proteins in the plasma of Yili horses for the breeding of racehorses. Blood samples were collected from the top three finishers, and lipidomics and proteomics analyses were performed. Lipidomic analysis identified 10 differential lipids. Compared to pre-race levels, phosphatidylethanolamine (18:0/16:0) (PE (18:0/16:0)) and phosphatidylcholine (18:0/18:2) (PC (18:0/18:2)) were significantly upregulated, while triglyceride (26:4/29:4) (TG (26:4/29:4)) and phosphatidylcholine (46:14CHO) (PC (46:14CHO)) were notably downregulated. These lipids were primarily associated with the regulation of lipolysis in adipocytes and glycerolipid metabolism pathways. Proteomic analysis revealed 79 differentially expressed proteins. Post-race, proteasome subunits (alpha type_2, alpha type_5 isoform X1, alpha type_6, and beta type_2), carboxypeptidase E, and S-phase kinase-associated protein 1 showed significant downregulation. These proteins were primarily involved in the cellular catabolic process (Gene Ontology term) and pathways related to the proteasome and type I diabetes mellitus (Kyoto Encyclopedia of Genes and Genomes terms). Correlation analysis indicated a significant positive correlation between proteasome subunits (alpha type_2 and beta type_2) and PC (18:0/18:2), while a significant negative correlation was found with PC (46:14CHO). Conversely, S-phase kinase-associated protein 1, along with proteasome subunits (alpha type_5 isoform X1 and alpha type_6), exhibited a significant negative correlation with PE (18:0/16:0) and a positive correlation with TG (26:4/29:4). In conclusion, Yili horses may sustain energy balance and physiological equilibrium during racing by suppressing protein degradation and optimizing lipid metabolism. The differentially expressed substances identified could serve as key biomarkers for assessing exercise load in horses.
Collapse
Affiliation(s)
- Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Zexu Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
| | - Luling Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
| | - Ran Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
| | - Shikun Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (L.L.); (R.W.); (S.M.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| |
Collapse
|
2
|
Cheng Y, Lin S, Cao Z, Yu R, Fan Y, Chen J. The role of chronic low-grade inflammation in the development of sarcopenia: Advances in molecular mechanisms. Int Immunopharmacol 2025; 147:114056. [PMID: 39799736 DOI: 10.1016/j.intimp.2025.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells. The interplay and interaction of these molecular mechanisms provide new perspectives on the complexity of the pathogenesis of sarcopenia and offer a theoretical foundation for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Shangjin Lin
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| |
Collapse
|
3
|
Mohan M, Mannan A, Nauriyal A, Singh TG. Emerging targets in amyotrophic lateral sclerosis (ALS): The promise of ATP-binding cassette (ABC) transporter modulation. Behav Brain Res 2025; 476:115242. [PMID: 39243983 DOI: 10.1016/j.bbr.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative primarily affecting motor neurons, leading to disability and neuronal death, and ATP-Binding Cassette (ABC) transporter due to their role in drug efflux and modulation of various cellular pathways contributes to the pathogenesis of ALS. In this article, we extensively investigated various molecular and mechanistic pathways linking ALS transporter to the pathogenesis of ALS; this involves inflammatory pathways such as Mitogen-Activated Protein Kinase (MAPK), Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt), Toll-Like Receptor (TLR), Glycogen Synthase Kinase 3β (GSK-3β), Nuclear Factor Kappa-B (NF-κB), and Cyclooxygenase (COX). Oxidative pathways such as Astrocytes, Glutamate, Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Sirtuin 1 (SIRT-1), Forkhead box protein O (FOXO), Extracellular signal-regulated kinase (ERK). Additionally, we delve into the role of autophagic pathways like TAR DNA-binding protein 43 (TDP-43), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and lastly, the apoptotic pathways. Furthermore, by understanding these intricate interactions, we aim to develop novel therapeutic strategies targeting ABC transporters, improving drug delivery, and ultimately offering a promising avenue for treating ALS.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Aayush Nauriyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Kubat GB, Picone P. Skeletal muscle dysfunction in amyotrophic lateral sclerosis: a mitochondrial perspective and therapeutic approaches. Neurol Sci 2024; 45:4121-4131. [PMID: 38676818 PMCID: PMC11306305 DOI: 10.1007/s10072-024-07508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease that results in the loss of motor neurons and severe skeletal muscle atrophy. The etiology of ALS is linked to skeletal muscle, which can activate a retrograde signaling cascade that destroys motor neurons. This is why satellite cells and mitochondria play a crucial role in the health and performance of skeletal muscles. This review presents current knowledge on the involvement of mitochondrial dysfunction, skeletal muscle atrophy, muscle satellite cells, and neuromuscular junction (NMJ) in ALS. It also discusses current therapeutic strategies, including exercise, drugs, stem cells, gene therapy, and the prospective use of mitochondrial transplantation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Pasquale Picone
- Istituto Per La Ricerca E L'Innovazione Biomedica, Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 0146, Palermo, Italy.
| |
Collapse
|
5
|
Shen J, Wang X, Wang M, Zhang H. Potential molecular mechanism of exercise reversing insulin resistance and improving neurodegenerative diseases. Front Physiol 2024; 15:1337442. [PMID: 38818523 PMCID: PMC11137309 DOI: 10.3389/fphys.2024.1337442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Neurodegenerative diseases are debilitating nervous system disorders attributed to various conditions such as body aging, gene mutations, genetic factors, and immune system disorders. Prominent neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. Insulin resistance refers to the inability of the peripheral and central tissues of the body to respond to insulin and effectively regulate blood sugar levels. Insulin resistance has been observed in various neurodegenerative diseases and has been suggested to induce the occurrence, development, and exacerbation of neurodegenerative diseases. Furthermore, an increasing number of studies have suggested that reversing insulin resistance may be a critical intervention for the treatment of neurodegenerative diseases. Among the numerous measures available to improve insulin sensitivity, exercise is a widely accepted strategy due to its convenience, affordability, and significant impact on increasing insulin sensitivity. This review examines the association between neurodegenerative diseases and insulin resistance and highlights the molecular mechanisms by which exercise can reverse insulin resistance under these conditions. The focus was on regulating insulin resistance through exercise and providing practical ideas and suggestions for future research focused on exercise-induced insulin sensitivity in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiawen Shen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Xianping Wang
- School of Medicine, Taizhou University, Taizhou, China
| | - Minghui Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Hu Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| |
Collapse
|
6
|
Dzik KP, Flis DJ, Kaczor-Keller KB, Bytowska ZK, Karnia MJ, Ziółkowski W, Kaczor JJ. Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice. J Mol Med (Berl) 2024; 102:379-390. [PMID: 38197966 PMCID: PMC10879285 DOI: 10.1007/s00109-023-02410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) may result from the dysfunctions of various mechanisms such as protein accumulation, mitophagy, and biogenesis of mitochondria. The purpose of the study was to evaluate the molecular mechanisms in ALS development and the impact of swim training on these processes. In the present study, an animal model of ALS, SOD1-G93A mice, was used with the wild-type mice as controls. Mice swam five times per week for 30 min. Mice were analyzed before ALS onset (70 days old), at ALS 1 disease onset (116 days old), and at the terminal stage of the disease ALS (130 days old), and compared with the corresponding ALS untrained groups and normalized to the wild-type group. Enzyme activity and protein content were analyzed in the spinal cord homogenates. The results show autophagy disruptions causing accumulation of p62 accompanied by low PGC-1α and IGF-1 content in the spinal cord of SOD1-G93A mice. Swim training triggered a neuroprotective effect, attenuation of NF-l degradation, less accumulated p62, and lower autophagy initiation. The IGF-1 pathway induces pathophysiological adaptation to maintain energy demands through anaerobic metabolism and mitochondrial protection. KEY MESSAGES: The increased protein content of p62 in the spinal cord of SOD1-G93A mice suggests that autophagic clearance and transportation are disrupted. Swim training attenuates neurofilament light destruction in the spinal cord of SOD1-G93A mice. Swim training reducing OGDH provokes suppression of ATP-consuming anabolic pathways. Swim training induces energy metabolic changes and mitochondria protection through the IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Katarzyna Patrycja Dzik
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Damian Józef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Barbara Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Magdalenka, Poland
| | - Zofia Kinga Bytowska
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences With Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Wiesław Ziółkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences With Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland.
| |
Collapse
|
7
|
Halon-Golabek M, Flis DJ, Zischka H, Akdogan B, Wieckowski MR, Antosiewicz J, Ziolkowski W. Amyotrophic lateral sclerosis associated disturbance of iron metabolism is blunted by swim training-role of AKT signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167014. [PMID: 38171451 DOI: 10.1016/j.bbadis.2023.167014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Swim training has increased the life span of the transgenic animal model of amyotrophic lateral sclerosis (ALS). Conversely, the progress of the disease is associated with the impairment of iron metabolism and insulin signaling. We used transgenic hmSOD1 G93A (ALS model) and non-transgenic mice in the present study. The study was performed on the muscles taken from trained (ONSET and TERMINAL) and untrained animals at three stages of the disease: BEFORE, ONSET, and TERMINAL. In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines expression vector pcDNA3.1 and transiently transfected with specific siRNAs. The progress of ALS resulted in decreased P-Akt/Akt ratio, which is associated with increased proteins responsible for iron storage ferritin L, ferritin H, PCBP1, and skeletal muscle iron at ONSET. Conversely, proteins responsible for iron export- TAU significantly decrease. The training partially reverses changes in proteins responsible for iron metabolism. AKT silencing in the SH-SY5Y cell line decreased PCBP2 and ferroportin and increased ferritin L, H, PCBP1, TAU, transferrin receptor 1, and APP. Moreover, silencing APP led to an increase in ferritin L and H. Our data suggest that swim training in the mice ALS model is associated with significant changes in iron metabolism related to AKT activity. Down-regulation of AKT mainly upregulates proteins involved in iron import and storage but decreases proteins involved in iron export.
Collapse
Affiliation(s)
- Małgorzata Halon-Golabek
- Department of Physiotherapy, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Damian Jozef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.
| | - Wiesław Ziolkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
8
|
Swim Training Affects on Muscle Lactate Metabolism, Nicotinamide Adenine Dinucleotides Concentration, and the Activity of NADH Shuttle Enzymes in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms231911504. [PMID: 36232801 PMCID: PMC9569676 DOI: 10.3390/ijms231911504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.
Collapse
|
9
|
Tarantino N, Canfora I, Camerino GM, Pierno S. Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells 2022; 11:cells11030415. [PMID: 35159225 PMCID: PMC8834084 DOI: 10.3390/cells11030415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.
Collapse
|
10
|
Flis DJ, Bialobrodzka EG, Rodziewicz-Flis EA, Jost Z, Borkowska A, Ziolkowski W, Kaczor JJ. The Effect of Long-Lasting Swimming on Rats Skeletal Muscles Energy Metabolism after Nine Days of Dexamethasone Treatment. Int J Mol Sci 2022; 23:748. [PMID: 35054933 PMCID: PMC8775511 DOI: 10.3390/ijms23020748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats' blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient's health due to the common use of glucocorticoids like Dex.
Collapse
Affiliation(s)
- Damian Jozef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 7 Street, 80-211 Gdansk, Poland
| | | | - Ewa Aleksandra Rodziewicz-Flis
- Department of Basic Physiotherapy, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland;
| | - Zbigniew Jost
- Department of Biochemistry, Gdansk University of Physical Education and Sport, K. Gorkiego 1 Street, 80-336 Gdansk, Poland;
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Dębinki 1 Street, 80-211 Gdansk, Poland;
| | - Wieslaw Ziolkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences, Medical University of Gdansk, Al. Zwycięstwa 30, 80-219 Gdansk, Poland;
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, University of Gdansk, J. Bazynskiego 8 Street, 80-308 Gdansk, Poland;
| |
Collapse
|