1
|
Coenen J, Strohm M, Reinsberger C. Impact of moderate aerobic exercise on small-world topology and characteristics of brain networks after sport-related concussion: an exploratory study. Sci Rep 2024; 14:25296. [PMID: 39455593 PMCID: PMC11511817 DOI: 10.1038/s41598-024-74474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Sport-related concussion (SRC) is a complex brain injury. By applying graph-theoretical analysis to networks derived from neuroimaging techniques, studies have shown that despite an overall retention of small-world topology, changes in small-world properties occur after brain injury. Less is known about how exercise during athletes' return to sport (RTS) influences these brain network properties. Therefore, in the present study dense electroencephalography (EEG) datasets were collected pre- and post-moderate aerobic exercise. Small-world properties of whole brain (WB) and the default mode network (DMN) were extracted from the EEG datasets of 21 concussed athletes and 21 healthy matched controls. More specifically, path length (LP), clustering coefficient (CP), and small-world index (SWI) in binary and weighted graphs were calculated in the alpha frequency band (7-13 Hz). Pre-exercise, SRC athletes had higher DMN-CP values compared to controls, while post-exercise SRC athletes had higher WB-LP compared to controls. Weighted WB analysis revealed a significant association between SRC and the absence of small-world topology (SWI ≤ 1) post-exercise. This explorative study provides preliminary evidence that moderate aerobic exercise during athletes' RTS induces an altered network response. Furthermore, this altered response may be related to the clinical characteristics of the SRC athlete.
Collapse
Affiliation(s)
- Jessica Coenen
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, Warburger Straße 100, Paderborn, 33098, Germany
| | - Michael Strohm
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, Warburger Straße 100, Paderborn, 33098, Germany
| | - Claus Reinsberger
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, Warburger Straße 100, Paderborn, 33098, Germany.
- Division of Sports Neurology and Neurosciences, Department of Neurology, Mass General Brigham, Boston, MA, USA.
| |
Collapse
|
2
|
Piskin D, Büchel D, Lehmann T, Baumeister J. Reliable electrocortical dynamics of target-directed pass-kicks. Cogn Neurodyn 2024; 18:2343-2357. [PMID: 39555268 PMCID: PMC11564708 DOI: 10.1007/s11571-024-10094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 11/19/2024] Open
Abstract
Football is one of the most played sports in the world and kicking with adequate accuracy increases the likelihood of winning a competition. Although studies with different target-directed movements underline the role of distinctive cortical activity on superior accuracy, little is known about cortical dynamics associated with kicking. Mobile electroencephalography is a popular tool to investigate cortical modulations during movement, however, inherent and artefact-related pitfalls may obscure the reliability of functional sources and their activity. The purpose of this study was therefore to describe consistent cortical dynamics underlying target-directed pass-kicks based on test-retest reliability estimates. Eleven participants performed a target-directed kicking task at two different sessions within one week. Electroencephalography was recorded using a 65-channel mobile system and behavioural data were collected including motion range, acceleration and accuracy performance. Functional sources were identified using independent component analysis and clustered in two steps with the components of first and subsequently both sessions. Reliability estimates of event-related spectral perturbations were computed pixel-wise for participants contributing with components of both sessions. The parieto-occipital and frontal clusters were reproducible for the same majority of the sample at both sessions. Their activity showed consistent alpha desyhronization and theta sychnronisation patterns with substantial reliability estimates revealing visual and attentional demands in different phases of kicking. The findings of our study reveal prominent cortical demands during the execution of a target-directed kick which may be considered in practical implementations and provide promising academic prospects in the comprehension and investigation of cortical activity associated with target-directed movements. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10094-0.
Collapse
Affiliation(s)
- Daghan Piskin
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| | - Daniel Büchel
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| | - Tim Lehmann
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department Sport and Health, Paderborn University, Warburger Straße 100, 33100 Paderborn, Germany
| |
Collapse
|
3
|
Yildirim MS, Guclu-Gunduz A, Ozkul C, Korkmaz S. Investigating the acute effect of low and moderate intensity aerobic exercise on whole-body task learning and cognition in young adults. Eur J Neurosci 2024; 60:5203-5216. [PMID: 39136270 DOI: 10.1111/ejn.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/08/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024]
Abstract
Recent studies have shown that a single bout of exercise has acute improvements on various forms of memory, including procedural motor learning, through mechanisms such as the plasticity-promoting effect. This study aimed to examine (1) the acute effects of timing and intensity of aerobic exercise on the acquisition and retention of motor learning in healthy adults, (2) the effect of sleep quality of the night before and after acquisition on motor learning, and (3) the acute effects of low and moderate-intensity aerobic exercise on cognitive functions. Seventy-five healthy adults were divided into five groups: Two groups performed low or moderate intensity aerobic exercise before motor practice; two groups performed low or moderate intensity aerobic exercise after motor practice; the control group only did motor practice. Low- and moderate-intensity exercises consisted of 30 min of running at 57%-63% and 64%-76% of the maximum heart rate, respectively. Motor learning was assessed using a golf putting task. The sleep quality of the night before and after the acquisition was evaluated using the Richard Campbell Sleep Questionnaire. Cognitive function was assessed before and after aerobic exercise using the Paced Auditory Serial Acquisition Task test. Results indicated that all groups demonstrated acquisition, 1-day and 7-day retention at a similar level (p > 0.05). Regression analysis revealed no significant relationship between sleep quality on the night before the experimental day and total acquisition (p > 0.05). However, a positive correlation was found between the sleep quality on the night of the experimental day and both 1-day and 7-day retention (p < 0.05). A single bout of low or moderate acute exercise did not modify motor skill acquisition and retention. Other results showed the importance of night sleep quality on the retention and proved that a single bout of moderate intensity exercise was associated with improved cognitive function.
Collapse
Affiliation(s)
- Muhammed Seref Yildirim
- Department of Physiotherapy and Rehabilitation, Trakya University Faculty of Health Sciences, Edirne, Türkiye
| | - Arzu Guclu-Gunduz
- Department of Physiotherapy and Rehabilitation, Gazi University Faculty of Health Sciences, Ankara, Türkiye
| | - Cagla Ozkul
- Department of Physiotherapy and Rehabilitation, Gazi University Faculty of Health Sciences, Ankara, Türkiye
| | - Selcuk Korkmaz
- Department of Biostatistics and Medical Informatics, Trakya University Faculty of Medicine, Edirne, Türkiye
| |
Collapse
|
4
|
Ammar A, Boujelbane MA, Simak ML, Fraile-Fuente I, Rizzi N, Washif JA, Zmijewski P, Jahrami H, Schöllhorn WI. Unveiling the acute neurophysiological responses to strength training: An exploratory study on novices performing weightlifting bouts with different motor learning models. Biol Sport 2024; 41:249-274. [PMID: 38524821 PMCID: PMC10955729 DOI: 10.5114/biolsport.2024.133481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 03/26/2024] Open
Abstract
Currently, there is limited evidence regarding various neurophysiological responses to strength exercise and the influence of the adopted practice schedule. This study aimed to assess the acute systemic effects of snatch training bouts, employing different motor learning models, on skill efficiency, electric brain activity (EEG), heart rate variability (HRV), and perceived exertion as well as mental demand in novices. In a within-subject design, sixteen highly active males (mean age: 23.13 ± 2.09 years) randomly performed snatch learning bouts consisting of 36 trials using repetitive learning (RL), contextual interference (blocked, CIb; and serial, CIs), and differential learning (DL) models. Spontaneous resting EEG and HRV activities were recorded at PRE and POST training bouts while measuring heart rate. Perceived exertion and mental demand were assessed immediately after, and barbell kinematics were recorded during three power snatch trials performed following the POST measurement. The results showed increases in alpha, beta, and gamma frequencies from pre- to post-training bouts in the majority of the tested brain regions (p values ranging from < 0.0001 to 0.02). The CIb model exhibited increased frequencies in more regions. Resting time domain HRV parameters were altered following the snatch bouts, with increased HR (p < 0.001) and decreased RR interval (p < 0.001), SDNN, and RMSSD (p values ranging from < 0.0001 to 0.02). DL showed more pronounced pulse-related changes (p = 0.01). Significant changes in HRV frequency domain parameters were observed, with a significant increase in LFn (p = 0.03) and a decrease in HFn (p = 0.001) registered only in the DL model. Elevated HR zones (> HR zone 3) were more dominant in the DL model during the snatch bouts (effect size = 0.5). Similarly, the DL model tended to exhibit higher perceived physical (effect size = 0.5) and mental exertions (effect size = 0.6). Despite the highest psycho-physiological response, the DL group showed one of the fewest significant EEG changes. There was no significant advantage of one learning model over the other in terms of technical efficiency. These findings offer preliminary support for the acute neurophysiological benefits of coordination-strength-based exercise in novices, particularly when employing a DL model. The advantages of combining EEG and HRV measurements for comprehensive monitoring and understanding of potential adaptations are also highlighted. However, further studies encompassing a broader range of coordination-strength-based exercises are warranted to corroborate these observations.
Collapse
Affiliation(s)
- Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax,University of Sfax, Sfax 3029, Tunisia
- High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mohamed Ali Boujelbane
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Tunisia
- Research Unit: “Physical Activity, Sport, and Health”, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
| | - Marvin Leonard Simak
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Fraile-Fuente
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nikolas Rizzi
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jad Adrian Washif
- Sports Performance Division, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Piotr Zmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Haitham Jahrami
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- Government Hospitals, Manama, Kingdom of Bahrain
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Tamburro G, Fiedler P, De Fano A, Raeisi K, Khazaei M, Vaquero L, Bruña R, Oppermann H, Bertollo M, Filho E, Zappasodi F, Comani S. An ecological study protocol for the multimodal investigation of the neurophysiological underpinnings of dyadic joint action. Front Hum Neurosci 2023; 17:1305331. [PMID: 38125713 PMCID: PMC10730734 DOI: 10.3389/fnhum.2023.1305331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Antonio De Fano
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Khadijeh Raeisi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Mohammad Khazaei
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Lucia Vaquero
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Pschology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Department of Medicine and Sciences of Aging, “University G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Edson Filho
- Wheelock College of Education and Human Development, Boston University, Boston, MA, United States
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
6
|
Domingos C, Marôco JL, Miranda M, Silva C, Melo X, Borrego C. Repeatability of Brain Activity as Measured by a 32-Channel EEG System during Resistance Exercise in Healthy Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1992. [PMID: 36767358 PMCID: PMC9914944 DOI: 10.3390/ijerph20031992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Electroencephalography (EEG) is attracting increasing attention in the sports and exercise fields, as it provides insights into brain behavior during specific tasks. However, it remains unclear if the promising wireless EEG caps provide reliable results despite the artifacts associated with head movement. The present study aims to evaluate the repeatability of brain activity as measured by a wireless 32-channel EEG system (EMOTIV flex cap) during resistance exercises in 18 apparently healthy but physically inactive young adults (10 men and 8 women). Moderate-intensity leg press exercises are performed with two evaluations with 48 h. between. This intensity allows enough time for data analysis while reducing unnecessary but involuntary head movements. Repeated measurements of EEG during the resistance exercise show high repeatability in all frequency bands, with excellent ICCs (>0.90) and bias close to zero, regardless of sex. These results suggest that a 32-channel wireless EEG system can be used to collect data on controlled resistance exercise tasks performed at moderate intensities. Future studies should replicate these results with a bigger sample size and different resistance exercises and intensities.
Collapse
Affiliation(s)
- Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| | - João Luís Marôco
- Exercise and Health Sciences Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Marco Miranda
- Department of Physics, Instituto Superior Técnico, University of Lisbon, 1749-016 Lisbon, Portugal
- Department of Bioengineering, LaSEEB-Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Carlos Silva
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| | - Xavier Melo
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, 1496-751 Oeiras, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal
| | - Carla Borrego
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| |
Collapse
|