Giri MK, Mondal S, Das BP, Mishra T. Signatures of Nontrivial Pairing in the Quantum Walk of Two-Component Bosons.
PHYSICAL REVIEW LETTERS 2022;
129:050601. [PMID:
35960573 DOI:
10.1103/physrevlett.129.050601]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Nearest neighbor bosons possessing only on-site interactions do not form on-site bound pairs in their quantum walk due to fermionization. We obtain signatures of nontrivial on-site pairing in the quantum walk of strongly interacting two component bosons in a one dimensional lattice. By considering an initial state with particles from different components located at the nearest-neighbor sites in the central region of the lattice, we show that in the dynamical evolution of the system, competing intra- and intercomponent on-site repulsion leads to the formation of on-site intercomponent bound states. We find that when the total number of particles is three, an intercomponent pair is favored in the limit of equal intra- and intercomponent interaction strengths. However, when two bosons from each species are considered, intercomponent pairs and trimer are favored depending on the ratios of the intra- and intercomponent interactions. In both cases, we find that the quantum walks exhibit a reentrant behavior as a function of intercomponent interaction.
Collapse