1
|
Rytik AP, Tuchin VV. Effect of terahertz radiation on cells and cellular structures. FRONTIERS OF OPTOELECTRONICS 2025; 18:2. [PMID: 39871024 PMCID: PMC11772664 DOI: 10.1007/s12200-024-00146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes. The problem of the safety of terahertz radiation for the human body from the point of view of its effect on the structures and systems of biological cells is also considered.
Collapse
Affiliation(s)
- A P Rytik
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
| | - V V Tuchin
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
- Science Medical Center, Saratov State University, Saratov, 410012, Russia.
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, 634050, Russia.
- Institute of Precision Mechanics and Control, Federal Research Center "Saratov Scientific Center of the Russian Academy of Sciences", Saratov, 410012, Russia.
| |
Collapse
|
2
|
Dione MN, Zhang Q, Shang S, Lu X. Transcriptomic Analysis of Blood Collagen-Induced Arthritis Mice Exposed to 0.1 THz Reveals Inhibition of Genes and Pathways Involved in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:12812. [PMID: 39684524 DOI: 10.3390/ijms252312812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation plays an essential role in the phases of rheumatoid arthritis (RA) as the joints secrete a range of molecules that modulate the inflammatory process. While therapies based on physical properties have shown effectiveness in a range of animal experimental models, the understanding of their biological mechanisms remains unclear. The aim of this study was to investigate the immunomodulatory effects of a 0.1 terahertz (THz) wave in rheumatoid arthritis in an attempt to dissect the molecular pathways implicated. The collagen-induced rheumatoid arthritis (CIA) model joint mice were irradiated daily for 30 min over a period of 2 weeks with continuous 0.1 terahertz waves. High-throughput bulk RNA sequencing of the murine blood was performed to analyze and characterize the differences in gene expression changes between the control (Ctrl), CIA (RA), and CIA exposed to THz. Differentially expressed genes, canonical pathway analysis, gene set enrichment, and protein-protein interaction were further run on the selected DEGs. We found that terahertz exposure downregulated gene ontologies representing the "TGF-β signaling pathway", "apoptosis", "activation of T cell receptor signaling pathway", and "non-canonical NF-κB signal transduction". These observations were further confirmed by a decreased level in the expression of transcription factors Nfib and Nfatc3, and an increased level of Lsp1. In addition, the expression of Mmp8 was significantly restored. These results indicate that THz ultimately attenuates the inflammatory response of hemocytes through the T cell and NF-κB pathway, and these changes are reverberated in the blood transcriptome. In this first report of transcriptome sequencing in a model of rheumatoid arthritis exposed to terahertz waves, the downregulated DEGs were associated with anti-inflammatory effects.
Collapse
Affiliation(s)
- Mactar Ndiaga Dione
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Hammarin G, Norder P, Harimoorthy R, Chen G, Berntsen P, Widlund PO, Stoij C, Rodilla H, Swenson J, Brändén G, Neutze R. No observable non-thermal effect of microwave radiation on the growth of microtubules. Sci Rep 2024; 14:18286. [PMID: 39112501 PMCID: PMC11306338 DOI: 10.1038/s41598-024-68852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Despite widespread public interest in the health impact of exposure to microwave radiation, studies of the influence of microwave radiation on biological samples are often inconclusive or contradictory. Here we examine the influence of microwave radiation of frequencies 3.5 GHz, 20 GHz and 29 GHz on the growth of microtubules, which are biological nanotubes that perform diverse functions in eukaryotic cells. Since microtubules are highly polar and can extend several micrometres in length, they are predicted to be sensitive to non-ionizing radiation. Moreover, it has been speculated that tubulin dimers within microtubules might rapidly toggle between different conformations, potentially participating in computational or other cooperative processes. Our data show that exposure to microwave radiation yields a microtubule growth curve that is distorted relative to control studies utilizing a homogeneous temperature jump. However, this apparent effect of non-ionizing radiation is reproduced by control experiments using an infrared laser or hot air to heat the sample and thereby mimic the thermal history of samples exposed to microwaves. As such, no non-thermal effects of microwave radiation on microtubule growth can be assigned. Our results highlight the need for appropriate control experiments in biophysical studies that may impact on the sphere of public interest.
Collapse
Affiliation(s)
- Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per Norder
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Guo Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Monash Health Imaging, Monash Health, Clayton, VIC, Australia
| | - Per O Widlund
- Institution of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Helena Rodilla
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Lei M, Zhang T, Lu X, Zhao X, Wang H, Long J, Lu Z. Membrane-mediated modulation of mitochondrial physiology by terahertz waves. BIOMEDICAL OPTICS EXPRESS 2024; 15:4065-4080. [PMID: 39022554 PMCID: PMC11249691 DOI: 10.1364/boe.528706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Extensive studies have demonstrated the diverse impacts of electromagnetic waves at gigahertz and terahertz (THz) frequencies on cytoplasmic membrane properties. However, there is little evidence of these impacts on intracellular membranes, particularly mitochondrial membranes crucial for mitochondrial physiology. In this study, human neuroblast-like cells were exposed to continuous 0.1 THz radiation at an average power density of 33 mW/cm2. The analysis revealed that THz exposure significantly altered the mitochondrial ultrastructure. THz waves enhanced the enzymatic activity of the mitochondrial respiratory chain but disrupted supercomplex assembly, compromising mitochondrial respiration. Molecular dynamics simulations revealed altered rates of change in the quantity of hydrogen bonds and infiltration of water molecules in lipid bilayers containing cardiolipin, indicating the specific behavior of cardiolipin, a signature phospholipid in mitochondria, under THz exposure. These findings suggest that THz radiation can significantly alter mitochondrial membrane properties, impacting mitochondrial physiology through a mechanism related to mitochondrial membrane, and provide deeper insight into the bioeffects of THz radiation.
Collapse
Affiliation(s)
- Mengyao Lei
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Tingrong Zhang
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Xiaoyun Lu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| | - Zhuoyang Lu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University
, Xi’an 710049, Shaanxi, China
| |
Collapse
|
5
|
Vasina M, Kovar D, Damborsky J, Ding Y, Yang T, deMello A, Mazurenko S, Stavrakis S, Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol Adv 2023; 66:108171. [PMID: 37150331 DOI: 10.1016/j.biotechadv.2023.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications which provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - David Kovar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Yun Ding
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland; Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
6
|
Graewert MA, Svergun DI. Advanced sample environments and sample requirements for biological SAXS. Methods Enzymol 2022; 677:1-39. [DOI: 10.1016/bs.mie.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|