1
|
Singh R, Singh A, Mahato AK, Paliwal R, Tiwari G, Kumar A. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Andrographis paniculata. Int J Mol Sci 2023; 24:ijms24119212. [PMID: 37298166 DOI: 10.3390/ijms24119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
Andrographis paniculata belongs to the family Acanthaceae and is known for its medicinal properties owing to the presence of unique constituents belonging to the lactones, diterpenoids, diterpene glycosides, flavonoids, and flavonoid glycosides groups of chemicals. Andrographolide, a major therapeutic constituent of A. paniculata, is extracted primarily from the leaves of this plant and exhibits antimicrobial and anti-inflammatory activities. Using 454 GS-FLX pyrosequencing, we have generated a whole transcriptome profile of entire leaves of A. paniculata. A total of 22,402 high-quality transcripts were generated, with an average transcript length and N50 of 884 bp and 1007 bp, respectively. Functional annotation revealed that 19,264 (86%) of the total transcripts showed significant similarity with the NCBI-Nr database and were successfully annotated. Out of the 19,264 BLAST hits, 17,623 transcripts were assigned GO terms and distributed into three major functional categories: molecular function (44.62%), biological processes (29.19%), and cellular component (26.18%) based on BLAST2GO. Transcription factor analysis showed 6669 transcripts, belonging to 57 different transcription factor families. Fifteen TF genes that belong to the NAC, MYB, and bHLH TF categories were validated by RT PCR amplification. In silico analysis of gene families involved in the synthesis of biochemical compounds having medicinal values, such as cytochrome p450, protein kinases, heat shock proteins, and transporters, was completed and a total of 102 different transcripts encoding enzymes involved in the biosynthesis of terpenoids were predicted. Out of these, 33 transcripts belonged to terpenoid backbone biosynthesis. This study also identified 4254 EST-SSRs from 3661 transcripts, representing 16.34% of the total transcripts. Fifty-three novel EST-SSR markers generated from our EST dataset were used to assess the genetic diversity among eighteen A. paniculata accessions. The genetic diversity analysis revealed two distinct sub-clusters and all accessions based on the genetic similarity index were distinct from each other. A database based on EST transcripts, EST-SSR markers, and transcription factors has been developed using data generated from the present study combined with available transcriptomic resources from a public database using Meta transcriptome analysis to make genomic resources available in one place to the researchers working on this medicinal plant.
Collapse
Affiliation(s)
- Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Gunjan Tiwari
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
2
|
Mishra G, Meena RK, Kant R, Pandey S, Ginwal HS, Bhandari MS. Genome-wide characterization leading to simple sequence repeat (SSR) markers development in Shorea robusta. Funct Integr Genomics 2023; 23:51. [PMID: 36707443 PMCID: PMC9883139 DOI: 10.1007/s10142-023-00975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
Tropical rainforests in Southeast Asia are enriched by multifarious biota dominated by Dipterocarpaceae. In this family, Shorea robusta is an ecologically sensitive and economically important timber species whose genomic diversity and phylogeny remain understudied due to lack of datasets on genetic resources. Smattering availability of molecular markers impedes population genetic studies indicating a necessity to develop genomic databases and species-specific markers in S. robusta. Accordingly, the present study focused on fostering de novo low-depth genome sequencing, identification of reliable microsatellites markers, and their validation in various populations of S. robusta in Uttarakhand Himalayas. With 69.88 million raw reads assembled into 1,97,489 contigs (read mapped to 93.2%) and a genome size of 357.11 Mb (29 × coverage), Illumina paired-end sequencing technology arranged a library of sequence data of ~ 10 gigabases (Gb). From 57,702 microsatellite repeats, a total of 35,049 simple sequence repeat (SSR) primer pairs were developed. Afterward, among randomly selected 60 primer pairs, 50 showed successful amplification and 24 were found as polymorphic. Out of which, nine polymorphic loci were further used for genetic analysis in 16 genotypes each from three different geographical locations of Uttarakhand (India). Prominently, the average number of alleles per locus (Na), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were recorded as 2.44, 0.324, 0.277 and 0.252, respectively. The accessibility of sequence information and novel SSR markers potentially enriches the current knowledge of the genomic background for S. robusta and to be utilized in various genetic studies in species under tribe Shoreae.
Collapse
Affiliation(s)
- Garima Mishra
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Rajendra K. Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Rama Kant
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun - 248 006, Uttarakhand Dehradun, India
| | - Harish S. Ginwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| | - Maneesh S. Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun - 248 195, Uttarakhand Dehradun, India
| |
Collapse
|
3
|
Miranda S, Lagrèze J, Knoll AS, Angeli A, Espley RV, Dare AP, Malnoy M, Martens S. De novo transcriptome assembly and functional analysis reveal a dihydrochalcone 3-hydroxylase(DHC3H) of wild Malus species that produces sieboldin in vivo. FRONTIERS IN PLANT SCIENCE 2022; 13:1072765. [PMID: 36589107 PMCID: PMC9800874 DOI: 10.3389/fpls.2022.1072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Sieboldin is a specialised secondary metabolite of the group of dihydrochalcones (DHC), found in high concentrations only in some wild Malus species, closely related to the domesticated apple (Malus × domestica L.). To date, the first committed step towards the biosynthesis of sieboldin remains unknown. In this study, we combined transcriptomic analysis and a de novo transcriptome assembly to identify two putative 3-hydroxylases in two wild Malus species (Malus toringo (K. Koch) Carriere syn. sieboldii Rehder, Malus micromalus Makino) whose DHC profile is dominated by sieboldin. We assessed the in vivo activity of putative candidates to produce 3-hydroxyphloretin and sieboldin by de novo production in Saccharomyces cerevisiae. We found that CYP98A proteins of wild Malus accessions (CYP98A195, M. toringo and CYP98A196, M. micromalus) were able to produce 3-hydroxyphloretin, ultimately leading to sieboldin accumulation by co-expression with PGT2. CYP98A197-198 genes of M. × domestica, however, were unable to hydroxylate phloretin in vivo. CYP98A195-196 proteins exerting 3-hydroxylase activity co-localised with an endoplasmic reticulum marker. CYP98A protein model from wild accessions showed mutations in key residues close to the ligand pocket predicted using phloretin for protein docking modelling. These mutations are located within known substrate recognition sites of cytochrome P450s, which could explain the acceptance of phloretin in CYP98A protein of wild accessions. Screening a Malus germplasm collection by HRM marker analysis for CYP98A genes identified three clusters that correspond to the alleles of domesticated and wild species. Moreover, CYP98A isoforms identified in M. toringo and M. micromalus correlate with the accumulation of sieboldin in other wild and hybrid Malus genotypes. Taken together, we provide the first evidence of an enzyme producing sieboldin in vivo that could be involved in the key hydroxylation step towards the synthesis of sieboldin in Malus species.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jorge Lagrèze
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
| | - Anne-Sophie Knoll
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Andrea Angeli
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mickael Malnoy
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
4
|
Transcriptome and HPLC Analysis Reveal the Regulatory Mechanisms of Aurantio-Obtusin in Space Environment-Induced Senna obtusifolia Lines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020898. [PMID: 35055719 PMCID: PMC8776150 DOI: 10.3390/ijerph19020898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023]
Abstract
Senna obtusifolia is a famous medicinal plant that is widely used in Asian countries. Its seed plays an important role in the treatment of many diseases because it contains various anthraquinones and flavonoids. Our previous studies have indicated that three space environment-induced S. obtusifolia lines (SP-lines) i.e., QC10, QC29, and QC46, have higher seed yield and aurantio-obtusin (AO) content. However, the underlying mechanism of higher AO content in SP-lines is still unknown. Herein, transcriptome sequencing and HPLC were employed to analyze the differences between SP-lines and ground control (GC3) and elucidate the regulatory mechanisms of AO accumulation in SP-lines. The results show that 4002 differentially expressed genes (DEGs) were identified in SP-lines versus (vs.) GC3. DEGs in the QC10 vs. GC3, QC29 vs. GC3, and QC46 vs. GC3 comparisons were classified into 28, 36, and 81 GO terms and involved in 63, 74, and 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene expression analysis revealed that DEGs involved in anthraquinone pathways were significantly elevated in QC10 and QC46. Integrating the results of GO annotation, KEGG enrichment, and gene expression analysis, we propose that the elevated genes such as DAHPS, DHQS, and MenB enhance the metabolic flux in the anthraquinone pathway and promote AO content in QC10 and QC46. Taken together, this study elucidated the mechanism of AO content in SP-lines and provides valuable genetic information for S. obtusifolia. In addition, to the best of our knowledge, this study presents the first transcriptome analysis of environment-induced medicinal plants and paves the way to select elite S. obtusifolia varieties in the future.
Collapse
|