1
|
Smith R, Morgan K, McCarron A, Cmielewski P, Reyne N, Parsons D, Donnelley M. Ultra-fast in vivodirectional dark-field x-ray imaging for visualising magnetic control of particles for airway gene delivery. Phys Med Biol 2024; 69:105025. [PMID: 38640914 DOI: 10.1088/1361-6560/ad40f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.Magnetic nanoparticles can be used as a targeted delivery vehicle for genetic therapies. Understanding how they can be manipulated within the complex environment of live airways is key to their application to cystic fibrosis and other respiratory diseases.Approach.Dark-field x-ray imaging provides sensitivity to scattering information, and allows the presence of structures smaller than the detector pixel size to be detected. In this study, ultra-fast directional dark-field synchrotron x-ray imaging was utlilised to understand how magnetic nanoparticles move within a live, anaesthetised, rat airway under the influence of static and moving magnetic fields.Main results.Magnetic nanoparticles emerging from an indwelling tracheal cannula were detectable during delivery, with dark-field imaging increasing the signal-to-noise ratio of this event by 3.5 times compared to the x-ray transmission signal. Particle movement as well as particle retention was evident. Dynamic magnetic fields could manipulate the magnetic particlesin situ. Significance.This is the first evidence of the effectiveness ofin vivodark-field imaging operating at these spatial and temporal resolutions, used to detect magnetic nanoparticles. These findings provide the basis for further development toward the effective use of magnetic nanoparticles, and advance their potential as an effective delivery vehicle for genetic agents in the airways of live organisms.
Collapse
Affiliation(s)
- Ronan Smith
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Kaye Morgan
- Department of Physics, Monash University, Wellington Road, Melbourne, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Nicole Reyne
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| |
Collapse
|