1
|
Shono M, Aburatani K, Yanagisawa M, Yoshikawa K, Shioi A. Periodic Alignment of Binary Droplets via a Microphase Separation of a Tripolymer Solution under Tubular Confinement. ACS Macro Lett 2024:207-211. [PMID: 38265017 PMCID: PMC10883045 DOI: 10.1021/acsmacrolett.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We report the spontaneous formation of a characteristic periodic pattern through the phase separation of a tripolymer solution comprising polyethylene-glycol (PEG)/dextran (DEX)/gelatin. When this tripolymer solution is introduced into a glass capillary with a PEG-coated inner surface, we observe the time-dependent growth of microphase separation. Remarkably, a self-organized, periodic alignment of DEX- and gelatin-rich microdroplets ensues, surrounded by a PEG-rich phase. This pattern demonstrates considerable stability, enduring for at least 8 h. The fundamental characteristics of the experimentally observed periodic alignment are successfully replicated via numerical simulations using a Cahn-Hilliard model underpinned by a set of simple, theoretically derived equations. We propose that this type of kinetically stabilized periodic patterning can be produced across a broad range of phase-separation systems by selecting appropriate boundary conditions such as at the surface within a narrow channel.
Collapse
Affiliation(s)
- Mayu Shono
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan
| | - Koki Aburatani
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan
| |
Collapse
|
2
|
Shono M, Honda G, Yanagisawa M, Yoshikawa K, Shioi A. Spontaneous Formation of Uniform Cell-Sized Microgels through Water/Water Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302193. [PMID: 37224803 DOI: 10.1002/smll.202302193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/07/2023] [Indexed: 05/26/2023]
Abstract
In this study, a one-step method is discussed for producing uniform cell-sized microgels using glass capillaries filled with a binary polymer blend of polyethylene glycol (PEG) and gelatin. Upon decreasing temperature, phase separation of the PEG/gelatin blends and gelation of gelatin occur, and then the polymer blend forms linearly aligned, uniformly sized gelatin microgels in the glass capillary. When DNA is added to the polymer solution, gelatin microgels entrapping DNA are spontaneously formed, and the DNA prevents the coalescence of the microdroplets even at temperatures above the melting point. This novel method to form uniform cell-sized microgels may be applicable to other biopolymers. This method is expected to contribute to diverse materials science via biopolymer microgels and biophysics and synthetic biology through cellular models containing biopolymer gels.
Collapse
Affiliation(s)
- Mayu Shono
- Department of Chemical Engineering and Materials Science, Doshisha University, 6100321, Kyoto, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, 113-0033, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, 6100394, Kyoto, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606 8501, Kyoto, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University, 6100321, Kyoto, Japan
| |
Collapse
|
3
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|