1
|
Zhu C, Wang Z, Zhou X, Wu Y, Kang W, Wu R, Xue C. Elucidating the Biosynthesis and Function of an Autoinducing Peptide in Clostridium acetobutylicum. Angew Chem Int Ed Engl 2025; 64:e202500904. [PMID: 39932863 DOI: 10.1002/anie.202500904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Clostridia produce autoinducing peptides (AIPs) regulated by the accessory gene regulator (Agr) quorum sensing system, playing a critical role in intercellular communication. However, the biosynthetic pathway and regulatory functions of clostridial AIPs remain inadequately characterized. In this study, we employed chemical quantification, genetic investigations, and in vitro reconstitution experiments to elucidate the native Ca-AIP in Clostridium acetobutylicum, a prominent industrial producer of acetone, butanol, and ethanol. Our findings identified a signal peptidase (Cac1760) and two CAAX metalloproteases (Cac0077 and Cac2478) as key players in N-terminal cleavage, while AgrB was found to be essential for C-terminal processing during Ca-AIP biosynthesis. Notably, overexpression of agrBD led to a 4.4-fold enhancement in Ca-AIP formation, which corresponded with an increase in butanol production from 12.5 to 14.9 g/L, while preserving vegetative cell morphology. The direct involvement of Ca-AIP in both butanol production and maintenance of cell morphology was further validated through exogenous supplementation. Collectively, these results provide novel insights into the biosynthesis of AIPs and propose a promising strategy for optimizing microbial processes in industrial applications.
Collapse
Affiliation(s)
- Chao Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zixuan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoyu Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Youduo Wu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| | - Wei Kang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| | - Ren'an Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chuang Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| |
Collapse
|
2
|
Ingelman H, Heffernan JK, Harris A, Brown SD, Shaikh KM, Saqib AY, Pinheiro MJ, de Lima LA, Martinez KR, Gonzalez-Garcia RA, Hawkins G, Daleiden J, Tran L, Zeleznik H, Jensen RO, Reynoso V, Schindel H, Jänes J, Simpson SD, Köpke M, Marcellin E, Valgepea K. Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness. N Biotechnol 2024; 83:1-15. [PMID: 38871051 DOI: 10.1016/j.nbt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microbes able to convert gaseous one-carbon (C1) waste feedstocks are increasingly important to transition to the sustainable production of renewable chemicals and fuels. Acetogens are interesting biocatalysts since gas fermentation using Clostridium autoethanogenum has been commercialised. However, most acetogen strains need complex nutrients, display slow growth, and are not robust for bioreactor fermentations. In this work, we used three different and independent adaptive laboratory evolution (ALE) strategies to evolve the wild-type C. autoethanogenum to grow faster, without yeast extract and to be robust in operating continuous bioreactor cultures. Multiple evolved strains with improved phenotypes were isolated on minimal media with one strain, named "LAbrini", exhibiting superior performance regarding the maximum specific growth rate, product profile, and robustness in continuous cultures. Whole-genome sequencing of the evolved strains identified 25 mutations. Of particular interest are two genes that acquired seven different mutations across the three ALE strategies, potentially as a result of convergent evolution. Reverse genetic engineering of mutations in potentially sporulation-related genes CLAU_3129 (spo0A) and CLAU_1957 recovered all three superior features of our ALE strains through triggering significant proteomic rearrangements. This work provides a robust C. autoethanogenum strain "LAbrini" to accelerate phenotyping and genetic engineering and to better understand acetogen metabolism.
Collapse
Affiliation(s)
- Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | - Asfand Yar Saqib
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Marina J Pinheiro
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Karen Rodriguez Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | - Ricardo A Gonzalez-Garcia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | | | | | | | | | - Jürgen Jänes
- Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | | | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
3
|
Neto AS, Wainaina S, Chandolias K, Piatek P, Taherzadeh MJ. Exploring the Potential of Syngas Fermentation for Recovery of High-Value Resources: A Comprehensive Review. CURRENT POLLUTION REPORTS 2024; 11:7. [PMID: 39583010 PMCID: PMC11579188 DOI: 10.1007/s40726-024-00337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Synthesis gas (syngas) fermentation represents a promising biological method for converting industrial waste gases, particularly carbon monoxide (CO) and carbon dioxide (CO₂) from industrial sources (e.g. steel production or municipal waste gasification), into high-value products such as biofuels, chemicals, and animal feed using acetogenic bacteria. This review identifies and addresses key challenges that hinder the large-scale adoption of this technology, including limitations in gas mass transfer, an incomplete understanding of microbial metabolic pathways, and suboptimal bioprocess conditions. Our findings emphasize the critical role of microbial strain selection and bioprocess optimization to enhance productivity and scalability, with a focus on utilizing diverse microbial consortia and efficient reactor systems. By examining recent advancements in microbial conditioning, operational parameters, and reactor design, this study provides actionable insights to improve syngas fermentation efficiency, suggesting pathways towards overcoming current technical barriers for its broader industrial application beyond the production of bulk chemicals.
Collapse
Affiliation(s)
- Alvaro S. Neto
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | | | - Pawel Piatek
- Division of Built Environment, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | | |
Collapse
|
4
|
Ren H, Wang R, Ying L, Iyobosa E, Chen G, Zang D, Tong M, Li E, Nerenberg R. Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. WATER RESEARCH 2024; 268:122595. [PMID: 39423786 DOI: 10.1016/j.watres.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs.
Collapse
Affiliation(s)
- Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Eheneden Iyobosa
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Di Zang
- The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
| | - Min Tong
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Enchao Li
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Im C, Kim M, Kim JR, Valgepea K, Modin O, Nygård Y, Franzén CJ. Low electric current in a bioelectrochemical system facilitates ethanol production from CO using CO-enriched mixed culture. Front Microbiol 2024; 15:1438758. [PMID: 39268540 PMCID: PMC11390636 DOI: 10.3389/fmicb.2024.1438758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO2 for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO2-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO2 electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO2 in N2 using serial cultivation. The CO-enriched culture was dominated by Clostridium autoethanogenum (≥89%) and showed electro-activity in a BES reactor with CO2 sparging. When 50% CO was included in the 20% CO2 gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
Collapse
Affiliation(s)
- Chaeho Im
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Kaspar Valgepea
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
6
|
Wan S, Lai M, Gao X, Zhou M, Yang S, Li Q, Li F, Xia L, Tan Y. Recent progress in engineering Clostridium autoethanogenum to synthesize the biochemicals and biocommodities. Synth Syst Biotechnol 2024; 9:19-25. [PMID: 38205027 PMCID: PMC10776380 DOI: 10.1016/j.synbio.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Excessive mining and utilization fossil fuels has led to drastic environmental consequences, which will contribute to global warming and cause further climate change with severe consequences for the human population. The magnitude of these challenges requires several approaches to develop sustainable alternatives for chemicals and fuels production. In this context, biological processes, mainly microbial fermentation, have gained particular interest. For example, autotrophic gas-fermenting acetogenic bacteria are capable of converting CO, CO2 and H2 into biomass and multiple metabolites through Wood-Ljungdahl pathway, which can be exploited for large-scale fermentation processes to sustainably produce bulk biochemicals and biofuels (e.g. acetate and ethanol) from syngas. Clostridium autoethanogenum is one representative of these chemoautotrophic bacteria and considered as the model for the gas fermentation. Recently, the development of synthetic biology toolbox for this strain has enabled us to study and genetically improve their metabolic capability in gas fermentation. In this review, we will summarize the recent progress involved in the understanding of physiological mechanism and strain engineering for C. autoethanogenum, and provide our perspectives on the future development about the basic biology and engineering biology of this strain.
Collapse
Affiliation(s)
- Sai Wan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Mingchi Lai
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xinyu Gao
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Mingxin Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
- Shenzhen Powered Carbon Biotechnology Co., Ltd, Shenzhen, 518055, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Fuli Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Lin Xia
- Shenzhen Powered Carbon Biotechnology Co., Ltd, Shenzhen, 518055, China
| | - Yang Tan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| |
Collapse
|
7
|
Diender M, Dykstra JC, Parera Olm I, Kengen SWM, Stams AJM, Sousa DZ. The role of ethanol oxidation during carboxydotrophic growth of Clostridium autoethanogenum. Microb Biotechnol 2023; 16:2082-2093. [PMID: 37814497 PMCID: PMC10616641 DOI: 10.1111/1751-7915.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
The Wood-Ljungdahl pathway is an ancient metabolic route used by acetogenic carboxydotrophs to convert CO into acetate, and some cases ethanol. When produced, ethanol is generally seen as an end product of acetogenic metabolism, but here we show that it acts as an important intermediate and co-substrate during carboxydotrophic growth of Clostridium autoethanogenum. Depending on CO availability, C. autoethanogenum is able to rapidly switch between ethanol production and utilization, hereby optimizing its carboxydotrophic growth. The importance of the aldehyde ferredoxin:oxidoreductase (AOR) route for ethanol production in carboxydotrophic acetogens is known; however, the role of the bifunctional alcohol dehydrogenase AdhE (Ald-Adh) route in ethanol metabolism remains largely unclear. We show that the mutant strain C. autoethanogenum ∆adhE1a, lacking the Ald subunit of the main bifunctional aldehyde/alcohol dehydrogenase (AdhE, CAETHG_3747), has poor ethanol oxidation capabilities, with a negative impact on biomass yield. This indicates that the Adh-Ald route plays a major role in ethanol oxidation during carboxydotrophic growth, enabling subsequent energy conservation via substrate-level phosphorylation using acetate kinase. Subsequent chemostat experiments with C. autoethanogenum show that the wild type, in contrast to ∆adhE1a, is more resilient to sudden changes in CO supply and utilizes ethanol as a temporary storage for reduction equivalents and energy during CO-abundant conditions, reserving these 'stored assets' for more CO-limited conditions. This shows that the direction of the ethanol metabolism is very dynamic during carboxydotrophic acetogenesis and opens new insights in the central metabolism of C. autoethanogenum and similar acetogens.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEindhoven‐Wageningen‐Utrecht AllianceUtrechtThe Netherlands
| | - James C. Dykstra
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Ivette Parera Olm
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEindhoven‐Wageningen‐Utrecht AllianceUtrechtThe Netherlands
| | - Servé W. M. Kengen
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre of Biological EngineeringUniversity of MinhoBragaPortugal
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEindhoven‐Wageningen‐Utrecht AllianceUtrechtThe Netherlands
| |
Collapse
|
8
|
Gebhard LJ, Duggin IG, Erdmann S. Improving the genetic system for Halorubrum lacusprofundi to allow in-frame deletions. Front Microbiol 2023; 14:1095621. [PMID: 37065119 PMCID: PMC10102395 DOI: 10.3389/fmicb.2023.1095621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, Antarctica. Hrr. lacusprofundi is commonly used to study adaptation to cold environments and thereby a potential source for biotechnological products. Additionally, in contrast to other haloarchaeal model organisms, Hrr. lacusprofundi is also susceptible to a range of different viruses and virus-like elements, making it a great model to study virus-host interactions in a cold-adapted organism. A genetic system has previously been reported for Hrr. lacusprofundi; however, it does not allow in-frame deletions and multiple gene knockouts. Here, we report the successful generation of uracil auxotrophic (pyrE2) mutants of two strains of Hrr. lacusprofundi. Subsequently, we attempted to generate knockout mutants using the auxotrophic marker for selection. However, surprisingly, only the combination of the auxotrophic marker and antibiotic selection allowed the timely and clean in-frame deletion of a target gene. Finally, we show that vectors established for the model organism Haloferax volcanii are deployable for genetic manipulation of Hrr. lacusprofundi, allowing the use of the portfolio of genetic tools available for H. volcanii in Hrr. lacusprofundi.
Collapse
Affiliation(s)
- L Johanna Gebhard
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Iain G Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Susanne Erdmann
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
9
|
Yang Z, Leero DD, Yin C, Yang L, Zhu L, Zhu Z, Jiang L. Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks. BIORESOURCE TECHNOLOGY 2022; 361:127656. [PMID: 35872277 DOI: 10.1016/j.biortech.2022.127656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of chemicals and biofuels from non-fossil carbon sources is considered key to reducing greenhouse gas (GHG) emissions. Clostridium sp. can convert various substrates, including the 1st-generation (biomass crops), the 2nd-generation (lignocellulosic biomass), and the 3rd-generation (C1 gases) feedstocks, into high-value products, which makes Clostridia attractive for biorefinery applications. However, the complexity of lignocellulosic catabolism and C1 gas utilization make it difficult to construct efficient production routes. Accordingly, this review highlights the advances in the development of three generations of feedstocks with Clostridia as cell factories. At the same time, more attention was given to using agro-industrial wastes (lignocelluloses and C1 gases) as the feedstocks, for which metabolic and process engineering efforts were comprehensively analyzed. In addition, the challenges of using agro-industrial wastes are also discussed. Lastly, several new synthetic biology tools and regulatory strategies are emphasized as promising technologies to be developed to address the aforementioned challenges in Clostridia and realize the efficient utilization of agro-industrial wastes.
Collapse
Affiliation(s)
- Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donald Delano Leero
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chengtai Yin
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|