1
|
Carnevale L, Lembo G. Imaging the cerebral vasculature at different scales: translational tools to investigate the neurovascular interfaces. Cardiovasc Res 2025; 120:2373-2384. [PMID: 39082279 DOI: 10.1093/cvr/cvae165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 05/23/2024] [Indexed: 04/09/2025] Open
Abstract
The improvements in imaging technology opened up the possibility to investigate the structure and function of cerebral vasculature and the neurovascular unit with unprecedented precision and gaining deep insights not only on the morphology of the vessels but also regarding their function and regulation related to the cerebral activity. In this review, we will dissect the different imaging capabilities regarding the cerebrovascular tree, the neurovascular unit, the haemodynamic response function, and thus, the vascular-neuronal coupling. We will discuss both clinical and preclinical setting, with a final discussion on the current scenery in cerebrovascular imaging where magnetic resonance imaging and multimodal microscopy emerge as the most potent and versatile tools, respectively, in the clinical and preclinical context.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Giuseppe Lembo
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy
| |
Collapse
|
2
|
Min Y, Li J, Jia S, Li Y, Nie S. Automated Cerebrovascular Segmentation and Visualization of Intracranial Time-of-Flight Magnetic Resonance Angiography Based on Deep Learning. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:703-716. [PMID: 39133457 PMCID: PMC11950609 DOI: 10.1007/s10278-024-01215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Time-of-flight magnetic resonance angiography (TOF-MRA) is a non-contrast technique used to visualize neurovascular. However, manual reconstruction of the volume render (VR) by radiologists is time-consuming and labor-intensive. Deep learning-based (DL-based) vessel segmentation technology may provide intelligent automation workflow. To evaluate the image quality of DL vessel segmentation for automatically acquiring intracranial arteries in TOF-MRA. A total of 394 TOF-MRA scans were selected, which included cerebral vascular health, aneurysms, or stenoses. Both our proposed method and two state-of-the-art DL methods are evaluated on external datasets for generalization ability. For qualitative assessment, two experienced clinical radiologists evaluated the image quality of cerebrovascular diagnostic and visualization (scoring 0-5 as unacceptable to excellent) obtained by manual VR reconstruction or automatic convolutional neural network (CNN) segmentation. The proposed CNN outperforms the other two DL-based methods in clinical scoring on external datasets, and its visualization was evaluated by readers as having the appearance of the radiologists' manual reconstructions. Scoring of proposed CNN and VR of intracranial arteries demonstrated good to excellent agreement with no significant differences (median, 5.0 and 5.0, P ≥ 12) at healthy-type scans. All proposed CNN image quality were considered to have adequate diagnostic quality (median scores > 2). Quantitative analysis demonstrated a superior dice similarity coefficient of cerebrovascular overlap (training sets and validation sets; 0.947 and 0.927). Automatic cerebrovascular segmentation using DL is feasible and the image quality in terms of vessel integrity, collateral circulation and lesion morphology is comparable to expert manual VR without significant differences.
Collapse
Affiliation(s)
- Yuqin Min
- Institute for Medical Imaging Technology, Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.889, Shuang Ding Road, Shanghai, 201801, China
- Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, No.334, Jun Gong Road, Shanghai, 200093, China
| | - Jing Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yi Shan Road, Shanghai, 200233, China
| | - Shouqiang Jia
- Department of Imaging, Jinan People's Hospital affiliated to Shandong First Medical University, Shandong, 271100, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yi Shan Road, Shanghai, 200233, China
| | - Shengdong Nie
- Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, No.334, Jun Gong Road, Shanghai, 200093, China.
| |
Collapse
|
3
|
Gong B, Khalvati F, Ertl-Wagner BB, Patlas MN. Artificial intelligence in emergency neuroradiology: Current applications and perspectives. Diagn Interv Imaging 2025; 106:135-142. [PMID: 39672753 DOI: 10.1016/j.diii.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Emergency neuroradiology provides rapid diagnostic decision-making and guidance for management for a wide range of acute conditions involving the brain, head and neck, and spine. This narrative review aims at providing an up-to-date discussion about the state of the art of applications of artificial intelligence in emergency neuroradiology, which have substantially expanded in depth and scope in the past few years. A detailed analysis of machine learning and deep learning algorithms in several tasks related to acute ischemic stroke involving various imaging modalities, including a description of existing commercial products, is provided. The applications of artificial intelligence in acute intracranial hemorrhage and other vascular pathologies such as intracranial aneurysm and arteriovenous malformation are discussed. Other areas of emergency neuroradiology including infection, fracture, cord compression, and pediatric imaging are further discussed in turn. Based on these discussions, this article offers insight into practical considerations regarding the applications of artificial intelligence in emergency neuroradiology, calling for more development driven by clinical needs, attention to pediatric neuroimaging, and analysis of real-world performance.
Collapse
Affiliation(s)
- Bo Gong
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada; Department of Computer Science. University of Toronto, Toronto, Ontario, M5S 2E4, Canada.
| | - Farzad Khalvati
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada; Department of Diagnostic & Interventional Radiology, the Hospital for Sick Children, Toronto, Ontario, M5 G 1E8, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, M5 G 0A4, Canada
| | - Birgit B Ertl-Wagner
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, Ontario, M5 G 0A4, Canada; Division of Neuroradiology, Department of Diagnostic & Interventional Radiology, The Hospital for Sick Children, Toronto, Ontario, M5 G 1E8, Canada
| | - Michael N Patlas
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, M5T 1W7, Canada
| |
Collapse
|
4
|
Sakakura Y, Masuo O, Fujimoto T, Terada T, Kono K. Pioneering artificial intelligence-based real time assistance for intracranial liquid embolization in humans: an initial experience. J Neurointerv Surg 2024:jnis-2024-022001. [PMID: 38937087 DOI: 10.1136/jnis-2024-022001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Liquid embolization in neuroendovascular procedures carries the risk of embolizing an inappropriate vessel. Operators must pay close attention to multiple vessels during the procedure to avoid ischemic complications. We report our experience with real time artificial intelligence (AI) assisted liquid embolization and evaluate its performance. METHODS An AI-based system (Neuro-Vascular Assist, iMed technologies, Tokyo, Japan) was used in eight endovascular liquid embolization procedures in two institutions. The software automatically detects liquid embolic agent on biplane fluoroscopy images in real time and notifies operators when the agent reaches a predefined area. Safety, efficacy, and accuracy of the notifications were evaluated using recorded videos. RESULTS Onyx or n-butyl-2-cyanoacrylate (NBCA) was used in the treatment of arteriovenous malformation, dural arteriovenous fistula, meningioma, and chronic subdural hematoma. The mean number of true positive and false negative notifications per case was 31.8 and 2.8, respectively. No false positive notifications occurred. The precision and recall of the notifications were 100% and 92.0%, respectively. In 28.3% of the true positive notifications, the operator immediately paused agent injection after receiving the notification, which demonstrates the potential effectiveness of the AI-based system. No adverse events were associated with the notifications. CONCLUSIONS To the best of our knowledge, this is the first report of real time AI assistance with liquid embolization procedures in humans. The system demonstrated high notification accuracy, safety, and potential clinical usefulness in liquid embolization procedures. Further research is warranted to validate its impact on clinical outcomes. AI-based real time surgical support has the potential to advance neuroendovascular treatment.
Collapse
Affiliation(s)
- Yuya Sakakura
- Department of Neurosurgery, NTT Medical Center Tokyo, Shinagawa-ku, Japan
| | - Osamu Masuo
- Department of Neuroendovascular Surgery, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Takeshi Fujimoto
- Department of Neurosurgery, Numata Neurosurgery & Cardiovascular Hospital, Numata, Gunma, Japan
| | - Tomoaki Terada
- Department of Neurosurgery, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kenichi Kono
- Department of Neurosurgery, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan
- iMed Technologies, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Grossen AA, Evans AR, Ernst GL, Behnen CC, Zhao X, Bauer AM. The current landscape of machine learning-based radiomics in arteriovenous malformations: a systematic review and radiomics quality score assessment. Front Neurol 2024; 15:1398876. [PMID: 38915798 PMCID: PMC11194423 DOI: 10.3389/fneur.2024.1398876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Background Arteriovenous malformations (AVMs) are rare vascular anomalies involving a disorganization of arteries and veins with no intervening capillaries. In the past 10 years, radiomics and machine learning (ML) models became increasingly popular for analyzing diagnostic medical images. The goal of this review was to provide a comprehensive summary of current radiomic models being employed for the diagnostic, therapeutic, prognostic, and predictive outcomes in AVM management. Methods A systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, in which the PubMed and Embase databases were searched using the following terms: (cerebral OR brain OR intracranial OR central nervous system OR spine OR spinal) AND (AVM OR arteriovenous malformation OR arteriovenous malformations) AND (radiomics OR radiogenomics OR machine learning OR artificial intelligence OR deep learning OR computer-aided detection OR computer-aided prediction OR computer-aided treatment decision). A radiomics quality score (RQS) was calculated for all included studies. Results Thirteen studies were included, which were all retrospective in nature. Three studies (23%) dealt with AVM diagnosis and grading, 1 study (8%) gauged treatment response, 8 (62%) predicted outcomes, and the last one (8%) addressed prognosis. No radiomics model had undergone external validation. The mean RQS was 15.92 (range: 10-18). Conclusion We demonstrated that radiomics is currently being studied in different facets of AVM management. While not ready for clinical use, radiomics is a rapidly emerging field expected to play a significant future role in medical imaging. More prospective studies are warranted to determine the role of radiomics in the diagnosis, prediction of comorbidities, and treatment selection in AVM management.
Collapse
Affiliation(s)
- Audrey A. Grossen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alexander R. Evans
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Griffin L. Ernst
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Connor C. Behnen
- Data Science and Analytics, University of Oklahoma, Norman, OK, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew M. Bauer
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Carvalho Macruz FBD, Dias ALMP, Andrade CS, Nucci MP, Rimkus CDM, Lucato LT, Rocha AJD, Kitamura FC. The new era of artificial intelligence in neuroradiology: current research and promising tools. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-12. [PMID: 38565188 PMCID: PMC10987255 DOI: 10.1055/s-0044-1779486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 04/04/2024]
Abstract
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
Collapse
Affiliation(s)
- Fabíola Bezerra de Carvalho Macruz
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
- Academia Nacional de Medicina, Rio de Janeiro RJ, Brazil.
| | | | | | - Mariana Penteado Nucci
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
| | - Carolina de Medeiros Rimkus
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Diagnósticos da América SA, São Paulo SP, Brazil.
| | | | - Felipe Campos Kitamura
- Diagnósticos da América SA, São Paulo SP, Brazil.
- Universidade Federal de São Paulo, São Paulo SP, Brazil.
| |
Collapse
|
7
|
Li X, Xiang S, Li G. Application of artificial intelligence in brain arteriovenous malformations: Angioarchitectures, clinical symptoms and prognosis prediction. Interv Neuroradiol 2024:15910199241238798. [PMID: 38515371 PMCID: PMC11571152 DOI: 10.1177/15910199241238798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) has rapidly advanced in the medical field, leveraging its intelligence and automation for the management of various diseases. Brain arteriovenous malformations (AVM) are particularly noteworthy, experiencing rapid development in recent years and yielding remarkable results. This paper aims to summarize the applications of AI in the management of AVMs management. METHODS Literatures published in PubMed during 1999-2022, discussing AI application in AVMs management were reviewed. RESULTS AI algorithms have been applied in various aspects of AVM management, particularly in machine learning and deep learning models. Automatic lesion segmentation or delineation is a promising application that can be further developed and verified. Prognosis prediction using machine learning algorithms with radiomic-based analysis is another meaningful application. CONCLUSIONS AI has been widely used in AVMs management. This article summarizes the current research progress, limitations and future research directions.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sishi Xiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guilin Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RLJ, Liu T, Wang T, Yang X. Deep learning in MRI-guided radiation therapy: A systematic review. J Appl Clin Med Phys 2024; 25:e14155. [PMID: 37712893 PMCID: PMC10860468 DOI: 10.1002/acm2.14155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Richard L. J. Qiu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tonghe Wang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
9
|
Staartjes VE, Zanier O, da Mutten R, Serra C, Regli L. Machine Intelligence in Cerebrovascular and Endovascular Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:383-395. [PMID: 39523278 DOI: 10.1007/978-3-031-64892-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The advent of different realms of computational neurosurgery-including not only machine intelligence but also visualization techniques such as mixed reality and robotic applications-is beginning to impact both open vascular as well as endovascular neurosurgery. Especially in this relatively common patient population of often very fragile patients, with potential for devastating complications and clinical outcomes and sometimes highly complex pathologies, computer assistance could prove particularly useful. In this chapter, state-of-the-art applications of machine learning toward vascular patients are elucidated: Beginning from simple clinical diagnostic, prognostic, and predictive modeling, to the interpretation of medical imaging (radiomics, segmentation, and diagnostic assistance) and synthetic imaging (image modality conversion, super-resolution, and 2D-to-3D-synthesis), up to intraoperative applications of computer vision (robotic steering, rapid intraoperative histopathology, and anatomical and surgical phase recognition), and natural language processing (enabling model training and big data, documentation, and large language models)-this chapter provides a "tour de force" of machine intelligence in the realm of neurovascular medicine.
Collapse
Affiliation(s)
- Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivier Zanier
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raffaele da Mutten
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlo Serra
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Luca Regli
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Beneš V, Bubeníková A, Skalický P, Bradáč O. Treatment of Brain Arteriovenous Malformations. Adv Tech Stand Neurosurg 2024; 49:139-179. [PMID: 38700684 DOI: 10.1007/978-3-031-42398-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Brain arteriovenous malformations (AVMs) are a rare entity of vascular anomalies, characteristic of anatomical shunting where arterial blood directly flows into the venous circulation. The main aim of the active treatment policy of brain AVMs is the prevention of haemorrhage. There are well-established treatment strategies that continually improve in their safety and efficacy, primarily due to the advances in imaging modalities, targeted and novel techniques, the development of alternative treatment approaches, and even better experience with the disease itself. There are interesting imaging novelties that may be prospectively applicable in the decision-making and planning of the most effective treatment approach for individual patients with intracranial AVM. Surgery is often considered the first-line treatment; however, each patient should be evaluated individually, and the risks of the active treatment policy should not overcome the benefits of the spontaneous natural history of the disease. All treatment modalities, i.e., surgery, radiosurgery, endovascular embolization, and observation, are justified but need to be meticulously selected for each individual patient in order to deliver the best treatment outcome. This chapter deals with historical and currently applied dogmas, followed by introductions of advances in each available treatment modality of AVM management.
Collapse
Affiliation(s)
- Vladimír Beneš
- Department of Neurosurgery and Neurooncology, Military University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adéla Bubeníková
- Department of Neurosurgery and Neurooncology, Military University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Neurosurgery, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Skalický
- Department of Neurosurgery and Neurooncology, Military University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Neurosurgery, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Bradáč
- Department of Neurosurgery and Neurooncology, Military University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic.
- Department of Neurosurgery, Motol University Hospital, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
11
|
Lee CC, Yang HC, Wu HM, Lin YY, Lu CF, Peng SJ, Wu YT, Sheehan JP, Guo WY. Computational Modeling and AI in Radiation Neuro-Oncology and Radiosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:307-322. [PMID: 39523273 DOI: 10.1007/978-3-031-64892-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The chapter explores the extensive integration of artificial intelligence (AI) in healthcare systems, with a specific focus on its application in stereotactic radiosurgery. The rapid evolution of AI technology has led to promising developments in this field, particularly through the utilization of machine learning and deep learning models. The diverse implementation of AI algorithms was developed from various aspects of radiosurgery, including the successful detection of spontaneous tumors and the automated delineation or segmentation of lesions. These applications show potential for extension to longitudinal treatment follow-up. Additionally, the chapter highlights the established use of machine learning algorithms, particularly those incorporating radiomic-based analysis, in predicting treatment outcomes. The discussion encompasses current achievements, existing limitations, and the need for further investigation in the dynamic intersection of AI and radiosurgery.
Collapse
Affiliation(s)
- Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Yu Lin
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipai, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biophotonics, National Yang Ming University, Taipei, Taiwan
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Chen C, Zhou K, Wang Z, Zhang Q, Xiao R. All answers are in the images: A review of deep learning for cerebrovascular segmentation. Comput Med Imaging Graph 2023; 107:102229. [PMID: 37043879 DOI: 10.1016/j.compmedimag.2023.102229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Cerebrovascular imaging is a common examination. Its accurate cerebrovascular segmentation become an important auxiliary method for the diagnosis and treatment of cerebrovascular diseases, which has received extensive attention from researchers. Deep learning is a heuristic method that encourages researchers to derive answers from the images by driving datasets. With the continuous development of datasets and deep learning theory, it has achieved important success for cerebrovascular segmentation. Detailed survey is an important reference for researchers. To comprehensively analyze the newest cerebrovascular segmentation, we have organized and discussed researches centered on deep learning. This survey comprehensively reviews deep learning for cerebrovascular segmentation since 2015, it mainly includes sliding window based models, U-Net based models, other CNNs based models, small-sample based models, semi-supervised or unsupervised models, fusion based models, Transformer based models, and graphics based models. We organize the structures, improvement, and important parameters of these models, as well as analyze development trends and quantitative assessment. Finally, we have discussed the challenges and opportunities of possible research directions, hoping that our survey can provide researchers with convenient reference.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangneng Zhou
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiliang Wang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Ruoxiu Xiao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 100024, China.
| |
Collapse
|
13
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
14
|
Application of artificial intelligence to stereotactic radiosurgery for intracranial lesions: detection, segmentation, and outcome prediction. J Neurooncol 2023; 161:441-450. [PMID: 36635582 DOI: 10.1007/s11060-022-04234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Rapid evolution of artificial intelligence (AI) prompted its wide application in healthcare systems. Stereotactic radiosurgery served as a good candidate for AI model development and achieved encouraging result in recent years. This article aimed at demonstrating current AI application in radiosurgery. METHODS Literatures published in PubMed during 2010-2022, discussing AI application in stereotactic radiosurgery were reviewed. RESULTS AI algorithms, especially machine learning/deep learning models, have been administered to different aspect of stereotactic radiosurgery. Spontaneous tumor detection and automated lesion delineation or segmentation were two of the promising application, which could be further extended to longitudinal treatment follow-up. Outcome prediction utilized machine learning algorithms with radiomic-based analysis was another well-established application. CONCLUSIONS Stereotactic radiosurgery has taken a lead role in AI development. Current achievement, limitation, and further investigation was summarized in this article.
Collapse
|
15
|
Colombo E, Fick T, Esposito G, Germans M, Regli L, van Doormaal T. Segmentation techniques of brain arteriovenous malformations for 3D visualization: a systematic review. LA RADIOLOGIA MEDICA 2022; 127:1333-1341. [PMID: 36255659 PMCID: PMC9747834 DOI: 10.1007/s11547-022-01567-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Visualization, analysis and characterization of the angioarchitecture of a brain arteriovenous malformation (bAVM) present crucial steps for understanding and management of these complex lesions. Three-dimensional (3D) segmentation and 3D visualization of bAVMs play hereby a significant role. We performed a systematic review regarding currently available 3D segmentation and visualization techniques for bAVMs. METHODS PubMed, Embase and Google Scholar were searched to identify studies reporting 3D segmentation techniques applied to bAVM characterization. Category of input scan, segmentation (automatic, semiautomatic, manual), time needed for segmentation and 3D visualization techniques were noted. RESULTS Thirty-three studies were included. Thirteen (39%) used MRI as baseline imaging modality, 9 used DSA (27%), and 7 used CT (21%). Segmentation through automatic algorithms was used in 20 (61%), semiautomatic segmentation in 6 (18%), and manual segmentation in 7 (21%) studies. Median automatic segmentation time was 10 min (IQR 33), semiautomatic 25 min (IQR 73). Manual segmentation time was reported in only one study, with the mean of 5-10 min. Thirty-two (97%) studies used screens to visualize the 3D segmentations outcomes and 1 (3%) study utilized a heads-up display (HUD). Integration with mixed reality was used in 4 studies (12%). CONCLUSIONS A golden standard for 3D visualization of bAVMs does not exist. This review describes a tendency over time to base segmentation on algorithms trained with machine learning. Unsupervised fuzzy-based algorithms thereby stand out as potential preferred strategy. Continued efforts will be necessary to improve algorithms, integrate complete hemodynamic assessment and find innovative tools for tridimensional visualization.
Collapse
Affiliation(s)
- Elisa Colombo
- Department of Neurosurgery, Clinical Neuroscience Center and University of Zürich, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zürich, ZH, Switzerland.
| | - Tim Fick
- Prinses Màxima Center, Department of Neurosurgery, Utrecht, CS, The Netherlands
| | - Giuseppe Esposito
- Department of Neurosurgery and Clinical Neuroscience Centerentrum, University Hospital of Zurich, Zürich, ZH, Switzerland
| | - Menno Germans
- Department of Neurosurgery and Clinical Neuroscience Centerentrum, University Hospital of Zurich, Zürich, ZH, Switzerland
| | - Luca Regli
- Department of Neurosurgery and Clinical Neuroscience Centerentrum, University Hospital of Zurich, Zürich, ZH, Switzerland
| | - Tristan van Doormaal
- Department of Neurosurgery and Clinical Neuroscience Centerentrum, University Hospital of Zurich, Zürich, ZH, Switzerland
| |
Collapse
|